¹³C-selective dissociation of 1-chloro-1,1-difluoroethane *via* vibrational excitation of the C–C bond

P. H. Ma,^{*a*} B. Wu,^{*a*} P. Hering,^{*b*} J. Göthel,^{*b*} M. M. Ivanenko,^{*b*} C. C. Chen,^{*a*} J. L. Liu,^{*a*} M. X. Chu,^{*a*} Y. Jing^{*a*} and W. Fuß^{*c*}

^a Qinghai Institute of Saline Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China

^b Institut für Lasermedizin, Heinrich-Heine-Universität, D40001 Düsseldorf, Germany

^c Max-Planck-Institut für Quantenoptik, D85740 Garching, Germany

The ¹³C-selective IR multiphoton dissociation of CF_2CICH_3 via the vibrational excitation of the C–C bond produces ¹³CF₂=CH₂ and CF₂=¹³CH₂; high ¹³C selectivity and production yield can be attained at low laser fluence.

Despite frequent works on the ¹³C-selective IR multiphoton dissociation of fluorinated methanes,¹⁻⁵ there have, so far, been few attempts to separate ¹³C by the isotopically selective excitation of fluorinated ethanes. In the studied fluorinated methanes, the C-F stretching vibration modes are generally excited for the ¹³C-selective absorption of IR photons. The fluorinated methanes, however, have larger vibrational anharmonicity in the vibrational spectra and their effective ¹³C-selective dissociation requires high laser fluence, which results in a higher energy consumption in the laser separation of ¹³C isotope.^{3,4} In the case of fluorinated ethanes, the vibrational anharmonicity is relatively small and the role of the rotational 'bottleneck' for the multiphoton absorption at lower levels is insignificant.^{6.7} This is favourable for the absorption of IR photons and high ¹³C decomposition yield by using a lower laser fluence. However, fluorinated ethanes have more complicated vibrational bands than methanes, actually, it is not easy to obtain high ¹³C selectivity in the infrared multiphoton dissociation of fluorinated ethanes. High ¹³C selectivity has been revealed only in the IR multiphoton dissociation of C_2F_5I by the ¹³C-selective excitation of the C-F₂ stretching mode at an extremely low pressure.8

We report here the results on the ¹³C-selective IR multiphoton dissociation of CF₂ClCH₃ by the excitation of the C-C stretching mode which is the v_6 band located at 1134 cm^{-1.9,10} isotope shifts for the C-C stretching modes of The ¹³C ¹³CF₂ClCH₃ and CF₂Cl¹³CH₃ have not been reported yet and are generally estimated to be ca. 15-25 cm⁻¹. It is possible to excite selectively ¹³CF₂ClCH₃ and CF₂Cl¹³CH₃ molecules by using the radiation of the 9R branch of a TEA CO₂ laser. In the present ¹³C separation experiments, intense IR light pulses of a TEA CO₂ laser were focused into a cylindrical Pyrex reaction cell with a length of 10 cm and an inner diameter of 2.5 cm. The laser pulse was composed of a main spike of 100 ns containing 60-70% of the total energy and a tail of 2 µs. The focused laser beam could be recognised as homogeneous along the beam direction and the effective photolytic zone was 2.5 cm³. CF₂ClCH₃ at a pressure of 13.3 mbar was irradiated with 2000 laser pulses at a fluence of about 2 J cm⁻² at the 9R(10) laser line (1071.88 cm⁻¹). The dissociated product detected by a gas chromatograph contained only 1,1-difluoroethene. The mass spectroscopy analysis indicated that ¹³C was highly enriched in the products ${}^{13}CF_2=CH_2$ and $CF_2={}^{13}CH_2$. We consider that the ¹³C-selective dissociation channels of CF₂ClCH₃ can be attributed to a four-centred elimination of HCl from ¹³CF₂ClCH₃ or CF₂Cl¹³CH₃,

$${}^{13}\mathrm{CF}_{2}\mathrm{CICH}_{3} \xrightarrow{nh\nu} {}^{13}\mathrm{CF}_{2} = \mathrm{CH}_{2} + \mathrm{HCl}$$
(1)

$$CF_2Cl^{13}CH_3 \xrightarrow{nnv} CF_2=^{13}CH_2 + HCl$$
 (2)

Table 1 cites a set of ¹³C yields per pulse and ¹³C concentrations of the CF and CH₂ fragments and the CF₂=CH₂ product. Under the mentioned photolytic condition, the ¹³C concentration of CF₂=CH₂ could reach 40%. In principle, when the ¹³C-C vibrational band is selectively excited, one carbon atom must maintain no 13C selectivity. It dilutes the 13C concentration of the product decomposed from the other reaction channel. So, the intrinsic ¹³C decomposition selectivity from reactions (1) and (2) should be higher than those observed in the CF and CH₂ mass fragments.[†] We also found that decreasing the initial working pressure of CF2ClCH3 resulted in a decrease of ¹³C concentration in the product. For instance, when we changed the pressure of CF₂ClCH₃ from 13.3 mbar to 6.7 mbar and maintained the same photolytic condition as mentioned above, the ¹³C concentration in the $CF_2=CH_2$ product dropped from 40 to 25%.

In order to further prove that the dissociation channel under the excitation of the intense IR laser is the elimination of HCl from CF₂ClCH₃ rather than the direct rupture of C–C, C–F or C–H bonds,¹¹ we added 2.7 mbar of oxygen into the reaction system containing 13.3 mbar of CF₂ClCH₃ as a radical scavenger. No evidence of the formation of oxygen-containing product was observed and oxygen did not obviously influence the ¹³C selectivity in the CF₂=CH₂ product under the same photolytic conditions.

The excitation of the C–C bond of fluorinated ethanes generally can not give high ¹³C selectivity and the maximum of the ¹³C concentration in the product can attain only 50% at optimum selective excitation. We have demonstrated that a fairly high ¹³C selectivity and yield in the ¹³C-selective IR multiphoton dissociation of CF₂ClCH₃ can be attained at a low laser fluence of 2–3 J cm⁻². In the ¹³C-selective dissociation of CHClF₂ which is a molecule investigated widely for ¹³C separation, the optimum ¹³C yield could be attained at 6–10 J cm⁻² and the yield at 2.5 J cm⁻² is only 1 × 10⁻³.^{1,4,5}

Table 1 13 C yields and concentrations in IR multiphoton dissociation of CF₂ClCH₃

Pressure of CF ₂ ClCH ₃ (mbar)	Laser fluence (J cm ⁻²)	¹³ C concentration in mass fragments (%)		¹³ C	13C wield
		CF	CH ₂	$CF_2=CH_2$ (%)	per pulse ^a
13.3 13.3 ^b 6.7	2.4 2.0 2.0	34 46 27	23 34 21	29 40 24	0.005 0.003 0.004

^{*a*} ¹³C yield per pulse is defined as the ratio of $2 \times {}^{13}$ C molecules decomposed per pulse to 13 C molecules irradiated per puse. ^{*b*} 2.6 mbar of oxygen was added into the reaction cell.

Therefore, in the ¹³C separation from the CHClF₂ system, the laser beam must be tightly focused and the resulting short photolytic zone limits the utilisation efficiency of photons. In the case of CF₂ClCH₃, a near parallel laser beam can be used to expand the effective photolytic zone several times and the ${}^{13}C$ yield must be enhanced.⁵ We expect that CF₂ClCH₃ is a promising molecule for practicable ¹³C separation.

Footnote

⁺ Considering the ¹³C concentration balance in the CF and CH₂ mass fragments of CF₂=CH₂, for 45% of ¹³CF and 20% of ¹³CH₂ detected in the mass spectrum the branch ratio of reaction (1) to (2) should be between 0.8 and 4 and the nascent ¹³C concentration in the CF₂ group originated from reaction (1) and in the CH₂ group produced from reaction (2) should be higher than at least 56 and 36%, respectively.

References

1 M. Gauthier, C. G. Cureton, P. A. Hackett and C. Willis, Appl. Phys. B, 1982, 28, 43.

- 2 P. H. Ma, K. Sugita and S. Arai, Chem. Phys. Lett., 1987, 137, 590.
- 3 W. Fuss, J. Göthel, M. Ivanenko, K. L. Kompa and W. E. Schmid, Z. Phys. D., At. Mol. Clusters, 1992, 24, 47.
- 4 P. H. Ma, K. Sugita and S. Arai, *Appl. Phys. B*, 1990, **50**, 385.
 5 G. C Chen, B. Wu, J. L. Liu, Y. Ying, M. X. Chu. L. L. Xue and P. H. Ma, Appl. Phys. B, 1995, B60, 583.
- 6 N. Blombergen, I. Burak, E. Mazur and T. B. Simpson, Isr. J. Chem., 1984, 24, 179.
- 7 T. B. Simpson, J. G. Black, I. Burak, E. Yablonovitch and N. Blombergen, J. Chem. Phys., 1985, 83, 638.
- 8 E. Weinberg, M. Gauthier, P. A. Hackett and C. Willis, Can. J. Chem., 1981, 59, 1307.
- 9 J. R. Durig, S. M. Craven, C. W. Hawley and J. Bragin, J. Chem. Phys., 1972, 57, 131.
- 10 D. C. Smith, G. M. Brown, J. R. Nielsen, R. M. Smith and C. Y. Liang, J. Chem. Phys., 1952, 20, 473
- 11 Aa. S. Sudbo, P. A. Schulz, E. R. Grant, Y. R. Shen and Y. T. Lee, J. Chem. Phys., 1978, 69, 1306

Received, 25th March 1996; Com. 6/02041K