Dynamics of dioxygen binding to vacant cobalt(II) sites in lacunar cyclidene complexes: barrier-free oxygenation

Elena V. Rybak-Akimova, Mohamad Masarwa, Keith Marek, P. Richard Warburton and Daryle H. Busch*

Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

The kinetics of O₂ binding to a demonstrably vacant coordination site on a cobalt(π) ion are determined, revealing a radical-like character for the reaction, with a very low activation barrier (*ca.* 1–2 kcal mol⁻¹) and large entropically controlled rate constants, whose values approach those for myoglobin and haemoglobin (up to 10⁸ dm³ mol⁻¹ s⁻¹).

CoII complexes constitute the most popular and successful class of synthetic O₂ carriers.¹ In addition to the fundamental importance of understanding the dynamics of oxygen binding to Co^{II} complexes, rapid binding and/or dissociation rates are critical to many applications of O_2 carriers. In the limited number of kinetic studies reported,^{2–8} the oxygenation rates of Co^{II} complexes were found to be slow compared to those for O_2 binding to natural dioxygen carriers. Second-order rate constants are in the range 10^7-10^8 dm³ mol⁻¹ s⁻¹ for natural compounds,⁹ and, with a few exceptions,^{6,8} 2-3 orders of magnitude smaller for synthetic Co complexes². Bond formation between the doublet state of low-spin d⁷ Co^{II} ion and the triplet O₂ molecule is expected to be much faster than has been observed. The probable source of this behaviour is shown in Scheme 1(a). The dissociation of a Co- solvent or Co-ligand bond may be involved in the rate-determining step in 1:1 Co- O_2 adduct formation.²⁺ This is strongly supported by recently determined activation volumes for reaction (1).8 Consequently, the reported kinetic parameters do not correspond directly to the process of forming the Co-O₂ bond. Instead, they characterize the rather trivial process of axial ligand dissociation from CoII. Additional complications arise because of the rapid formation of dinuclear complexes by Co-O₂ adducts [eqn. (2)].^{2c,5,6a}

$$\operatorname{CoL} + \operatorname{O}_2 \quad \frac{k_1}{k_{-1}} \operatorname{CoL}(\operatorname{O}_2) \tag{1}$$

$$CoL(O_2) + CoL \quad \underbrace{\frac{k_2}{k_{-2}}}_{k_{-2}} CoL(O_2)CoL \tag{2}$$

From the preceding discussion, we conclude that a vacant or unusually labile coordination site on Co^{II} is necessary to follow the dynamics of Co–O₂ bond formation [eqn. (1)]. In the systems reported here, the ligand environment of lacunar

Scheme 1

cyclidenes provides such vacant Co^{II} sites and has helped us elucidate the kinetic and mechanistic aspects of this process. The lacunar structures of the ligands prevents the coordination of solvent or axial base [pyridine (py) or *N*-methylimidazole (mim)], but not O₂ molecules, in the sixth position.^{10,11} Co^{II} cyclidene complexes with C₄ and C₅ bridges are five-coordinate in the presence of py and mim, invariably with the axial base bound externally and opposite the O₂ binding site. Moreover, the 1:1 O₂ adducts of these lacunar Co^{II} cyclidene complexes do not tend to form μ -peroxo dimers,¹⁰ leading us to expect simple O₂ binding and dissociation kinetics. Further, autoxidative ligand destruction is very slow on the timescale for O₂ binding (<10⁷ ×).¹²

Kinetics were followed with a cryogenic stopped-flow instrument over the temperature range -75 to 0 °C.‡. The low temperatures used offer three advantages: (*i*) the reactions may be slower, facilitating more precise rate determinations; (*ii*) the equilibrium of eqn. (1) is shifted toward oxygen adduct formation, providing greater absorbance changes upon reaction; and (*iii*) competing autoxidation reactions are retarded. The observed absorbance changes over 320–480 nm (Fig. 1) agree with data obtained under equilibrium conditions.^{10b,c} The observed rate constants (excess O₂) are independent of Co concentration and increase linearly with increasing O₂ concentration, supporting the simple reversible model [eqn. (1)]. The binding and dissociation rate constants k_1 and k_{-1} were found from eqn. (3).¹³

$$k_{\rm obs} = k_1[O_2] + k_{-1} \tag{3}$$

Equilibrium constants, K_{eq} , calculated from the rate constants are in a good agreement with those obtained earlier by spectrophotometric O₂ titrations.¹⁰ Arrhenius plots were used to determine activation parameters for both the forward and reverse reactions (1).¹³ The kinetic parameters are summarized in Table 1.

If solvent dissociation were a kinetically significant factor in a process for O₂ binding,[†] k_1 would be sensitive to the nature of the solvent. When a strong axial base (mim) is coordinated to Co^{II}, the kinetic parameters for the forward reaction are essentially independent of solvent. Therefore, dissociation of a solvent ligand is not important in the present case, in contrast to systems described elsewhere.^{2,8} The negative values of the activation entropy support this conclusion, indicating a decrease in degrees of freedom at the transition state. This result is most consistent with bond forming.

The kinetic data reported here characterize the distinctive process of binding a free O_2 molecule to a vacant site at Co^{II}

	Compound	Solvent (base)	Binding			Dissociation			
			k_1/dm^3 mol ⁻¹ s ⁻¹	$\Delta H_1^{\ddagger}/$ kcal mol ⁻¹	$\Delta S_1^{\ddagger}/cal$ K ⁻¹ mol ⁻¹	k_{-1}/s^{-1}	$\Delta H_1^{\ddagger}/$ kcal mol ⁻¹	ΔS_{-1} [‡] /cal K ⁻¹ mol ⁻¹	
	Co(C ₅ Cyc)	Me ₂ CO (mim)	2.0×10^{6}	0.7	-28	1.1×10^{4}	18.4	22	
	Co(C ₅ Cyc)	MeCN (mim)	3.7×10^{6}	0.6	-27	9.2×10^{3}	17.8	19	
	Co(C ₅ Cyc)	MeOH (mim)	2.4×10^{6}	2.0	-23	1.6×10^{4}	18.6	23	
	Co(C ₅ Cyc)	Me ₂ CO (py)	2.3×10^{6}	2.6	-21	$1.0 imes 10^5$	15	15	
	Co(C ₄ Cyc)	Me ₂ CO (mim)	$5.4 imes10^4$	2.2	-31	3.6×10^{5}	15.6	19	
	$Co(C_6Cyc)^a$	Me ₂ CO (mim)	1×10^{8}	4	-10				
	CoMb (SW) ^b	H ₂ Õ	4.8×10^{7}	9.2	7.6	4×10^3	17.8	17.7	
	FeMb (horse) ^c	H ₂ O	$1.4 imes 10^7$	5.5	-7.2	$1.0 imes10^{1}$	19	9.4	

^a Preliminary data. ^b Ref. 9. ^c E. Antonini and M. Brunori, *Hemoglobin and myoglobin in their reactions with ligands*, North-Holland, Amsterdam, 1971.

Fig. 1 Spectral changes [vs. spectrum of Co(C₅Cyc)] during the reaction of Co(C₅Cyc) with O₂ in MeCN-mim (1.5 mol dm⁻³) at -40 °C. Spectra were registered 0.001, 0.002, 0.004, 0.007 and 0.018 s after mixing the reagents. $C_{CoL} = 2.5 \times 10^{-5}$, $C_{O2} = 1.25 \times 10^{-4}$ mol dm⁻³. Inset: kinetic trace at 420 nm, superimposed with one-exponential decay curve fit.

[Scheme 1(*b*)]. The most striking feature of this reaction is its very low activation enthalpy $(1-2 \text{ kcal mol}^{-1}; \text{ cal } = 4.184 \text{ J})$, the first such example corresponding to Co–O₂ bond formation. This result indicates that no significant energy expenditure is necessary to achieve the transition state. The interaction between Co^{II} and O₂ as they combine within the 'dry cavity' of the cyclidene ligand is apparently similar to a radical combination process. Earlier studies have pointed out the parallel behaviour of the reactions of macrocyclic Co^{II} complexes with O₂ and with alkyl radicals.^{6a} Activation enthalpies for oxygenation of synthetic Co^{II} complexes have previously been found in the range 4–20 kcal mol^{-1,3,4} In all of those cases, it was concluded that the dissociation of a sixth ligand occurs prior to, or simultaneously with, Co–O₂ bond formation.

Despite the very small activation enthalpy for the oxygenation of Co^{II} cyclidenes in the presence of axial base, the rate constants k_1 show a strong dependence on bridge length (10³ \times), bracketing the value of k_1 for Co myoglobin (Table 1). This entropic effect is attributed to the spatial constraints associated with entrance of O₂ into the cavity. The same structural feature which protects the vacant Co^{II} site from coordination by solvent or a large nitrogen base also partially restricts the availability of this vacant site for O2. However, the difference in size between O₂ and solvent/base molecules allows one to optimize cavity size for rapid O₂ binding. In case of CoII cyclidenes, the C_6 bridge provides such an optimum. The rate of oxygenation of $[Co(C_6Cyc)(mim)]^{2+}$ is slightly greater than that for Co(Mb) (Table 1), and almost 2 orders of magnitude greater than that for Co(C₅Cyc). The variation in the oxygen affinities of Co^{II} cyclidenes with bridge length is primarily determined by the differences in their rates of O2 binding.

The kinetic parameters for the dissociation of the Co(C₅Cyc) O_2 adduct are also virtually solvent independent, but sensitive to the nature of the axial base. The significant decrease in k_{-1} when py is replaced with mim (an enthalpic effect) explains why complexes with mim have O_2 affinities 10–20 times greater than those with py.¹⁰ The large values of the activation enthalpies and the positive values of activation entropy correspond to breaking of the Co– O_2 bond at the transition state. The apparent insensitivity of the dissociation rate to bridge length suggests that cavity size does not affect Co– O_2 bond strength.

The support of this work by the National Science Foundation is deeply appreciated. The rate measurements were greatly facilitated by Ted King of Hi-Tech Scientific.

Footnotes

[†] The oxygen dependence associated with the kinetics of the solvent dissociation/oxygen binding process [Scheme 1(a)] can be rationalized with either a pre-equilibrium or steady-state model.

‡ Hi-Tech Scientific (England) SF-41 CryoStopped-Flow instrument equipped with a stainless-steel mixing chamber.

References

- E.C. Niederhoffer, J. H. Timmons and A. E. Martell, *Chem. Rev.* 1984, 84, 137; T. D. Smith and J. T. Pilbrow, *Coord. Chem. Rev.*, 1981, 39, 295; R. D. Jones, D. A. Summerville and F. Basolo, *Chem. Rev.*, 1979, 79, 139; G. McLendon and A. E. Martell, *Coord. Chem. Rev.* 1976, 19,
- 2 (a) P. R. Warburton and D. H. Busch, Perspectives on Bioinorganic Chemistry, JAI Press, 1993, vol. 2, pp. 1–79, and references therein;
 (b) S. Fallab and P. R. Mitchell, Adv. Inorg. Bioinorg. Mech., 1984, 3, 325; (c) R. G. Wilkins, Adv. Chem. Ser. 1971, 100, 111.
- 3 J. Simplicio and R. G. Wilkins, J. Am. Chem. Soc., 1969, 91, 1325; (b) F. Miller, J. Simplicio and R. G. Wilkins, J. Am. Chem. Soc., 1969, 91, 1962; (c) F. Miller and R. G. Wilkins, J. Am. Chem. Soc., 1970, 92, 2687. (d) J. Simplicio and R. G. Wilkins, J. Am. Chem. Soc., 1967, 89, 6092.
- 4 M. Strasak and J. Kavalek, J. Mol. Catal., 1990, 61, 123.
- 5 C.-L. Wong, J. A. Switzer, K. P. Balakrishnan and J. F. Endicott, J. Am. Chem. Soc., 1980, 102, 5511.
- 6 (a) A. Bakac and J. H. Espenson, J. Am. Chem. Soc. 1990, **112**, 2273; (b) A. Bakac and J. H. Espenson, Inorg. Chem., 1990, **29**, 2062.
- 7 A. Puxeddu and G. Costa, J. Chem. Soc., Dalton Trans., 1981, 1115.
- 8 M. Zhang, R. van Eldik, J. H. Espenson and A. Bakac, *Inorg. Chem.*, 1994, **33**, 130.
- 9 H. Yamamoto, F. J. Kayne and T. Yonetani, J. Biol. Chem., 1974, 249, 691.
- (a) D. H. Busch and N. W. Alcock, *Chem. Rev.*, 1994, 94, 585; (b) D. H. Busch, P. J. Jackson, M. Kojima, *et al.*, *Inorg. Chem.*, 1994, 33, 910;
 (c) J. C. Stevens and D. H. Busch, *J. Am. Chem. Soc.* 1980, **102**, 3285.
- 11 N. Ye and D. H. Busch, Inorg. Chem., 1991, 30, 1815.
- 12 M. Masarwa, P. R. Warburton, W. E. Evans and D. H. Busch, *Inorg. Chem.* 1993, **32**, 3826.
- 13 J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York, 1981.

Received, 28th February 1996; Com. 6/01429A

1452 Chem. Commun., 1996