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Imines are allylated chemoselectively in the presence of 
aldehydes using allylstannanes with a n-allylpalladium 
chloride dimer catalyst. 

It is widely accepted by organometallic and organic chemists 
that an aldehyde is more reactive towards carbanionic organo- 
metallics, such as allyl Grignard and allyllithium reagents, than 
the corresponding imine, [eqn.( l)]. This is also the case in the 
Lewis acid mediated allylation with allylstannanes and allylsi- 
lanes' [eqn.(l)]. Here we report that an entirely opposite 
chemoselectivity can be obtained by the palladium catalysed 
reaction of allylstannanes, [eqn.(2)]; an imine is more reactive 
than the corresponding aldehyde under such conditions. 

We recently reported that the palladium (and platinum) 
catalysed addition of allylstannanes with aldehydes proceeds 
through a bis-n-allylpalladium intermediate, which acts as a 
nucleophilic allylating agent.2 The nucleophilic reactivity of the 
intermediate is in marked contrast to the electrophilic reactivity 
of ordinary n-allylpalladium complexes (n-allylPdX, X = 
OAc, halogen,0C02R etc.).3 We first extended this finding to 
the imine addition reaction (Table 1). The addition of allyl- (la), 
crotyl- (lb) and methylallyl- (lc) stannanes to various imines 
(2a-g) proceeded smoothly to give the corresponding allylated 
products 3 in good to high yields. Surprisingly, the reactivities 
of allylstannanes to imines were higher than those to alde- 
hydes.t,2 We next examined the palladium catalysed allylation 
in the presence of both aldehydes and imines [eqn. (3) and 
Table 21. 

Generally speaking, the reactivity of allylstannanes to 
aldehydes is higher than that to imines under Lewis acid 
promoted conditions (methods B and C).l However, the 
allylation chemoselectivity under the palladium catalysed 
conditions was completely reversed; the highest selectivities 
were especially obtained using a x-allylpalladium chloride 
dimer as catalyst (method A).$ Reasonably high chemoselec- 
tivity was obtained in the allylation of p-nitrobenzaldehyde and 
its amine partner 2a, derived from methyl p-aminobenzoate (the 

RyH +Rv (2) 
0 NHR' 

2 4 3 5 

Ciufolini imine4) (entries 1 and 2). The use of imine derived 
from aniline decreased the chemoselectivity (entries 3 and 4). 
Very high chemoselectivities were produced in the allylation of 
other aromatic, aliphatic and cinnamic aldehydes and their 
imine partners (entries 5-14). The use of the Ciufolini imine 
was essential to obtain such high chemoselectivities. We also 
examined the allylation with allylmagnesium bromide in the 
presence of p-nitrobenzaldehyde and 2h (1 : 1) to elucidate the 
chemoselectivity in a carbanionic allylation; 3:  5 = 1 : > 99 
(cf. entries 3 and 4). 

This unprecedented chemoselectivity can be explained by the 
difference of the coordination ability between the nitrogen and 
oxygen atoms to the transition metal (Scheme 1). In general, a 
nitrogen atom can coordinate to a transition metal more strongly 
than an oxygen atom.5 Catalytic amounts of the bis-n- 
allylpalladium intermediate 6 would react with imines more 
predominantly than with aldehydes to give 7, which would 
afford 3 via 8. The key intermediate 6 is regenerated by the 
reaction of 8 and la. Excess amounts of Lewis acid ( > 2 equiv.) 
can coordinate to both aldehyde and imines, activating both 
electrophiles in the same manner; the resulting aldehyde-Lewis 
acid complex is more electrophilic than the imine complex. The 
use of 1 equiv. BF,.OEt, (Table 2) gave ca. 50 : 50 of 3 to 5 and 
the use of catalytic (10 mol%) BF,.OEt, did not give the 
allylation products at a11.6 The regeneration of 6 via the catalytic 

Table 1 Palladium catalysed allylation of allylic stannanes with iminea 

R* 
R3 n", R4 

R1&SnBu3 Reaction 
time R4HN R2 Entry 

1 2 3, yield (Oh) 

1 a R1 = R2 = H a R3 = p-(N02)C6H4 
R4 = p-(C02Me)C6H4 

R4 = Bn 
3 a  c R3 = Ph 

R4 = p-(C02Me)C6H4 
4 a  d R3 = p-(OMe)C& 

5 a  e R3 = PhCH = CH 

6 a  f R3 = c-hex 

2 a  b R3 = p-(N02)C& 

R4 = p-(Co&k)C6H4 

R4 = p-(C02Me)C6H4 

R4 = p-(OMe)C6H4 

R4 = p-(C02Me)C6H4 
7 a  g R3 = Pri 

8 bR1 = Me a 

9 bh b 
R2 = H 

10 c R1 = H g 
R2 = Me 

I d  77 

I d  98 

2 d  98 

2 d  82 

2 0 h  90 

2 d  72 

1 4 h  81 

1 d 96(6:4)1 

18 h 76(1: 1) 
20 h 80 

A mixture of 1 (0.6 mmol), 2 (0.5 mmol), PdC12(PPh3)2 (0.05 mmol) and 
THF ( 5  ml) was stirred at 50 "C for the indicated period. Crotylstannane, 
E : 2 = 76 : 24, was used. Syn : anti shown in parentheses. Crotylstannane, 
E : Z  = 60:40, also produced the adduct in 94% yield with same 
syn : anti. 
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Table 2 Chemoselective allylation of imines in the presence of aldehydes 

Entry Condi- Yield 
Imine 2 Aldehyde 4 tionsa (%) 3 : 5 h  

1 a p-(NO2)C6H4CHO 
2 
3 h' p-(NO&jH4CHO 
4 
5 d p-(MeO)C6H4CHO 
6 
7 ic p-tolualdehyde 
8 
9 e trans-cinnamaldehyde 

10 
11 f c-hexylcarboxaldehyde 
12 
13 jc c-hexylcarboxaldehyde 
14 

A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
C 
A 
C 

90 
95 
84 
91 
99 
96 
86 
99 
99 
98 
80 
60 
99 
60 

90: 10 
10 : 90 
83: 17 
19:81 
97:3 

94:6 

>99: 1 

91 :9 

>99: 1 

1 :  >99 

5:95 

1 :  >99 

1 :  >99 

1 :  >99 

A; A mixture of 2 (0.2 mmol), 4 (0.2 mmol) and allyltributylstannane (0.2 
mmol) was dissolved in THF (5  ml). (q3-C3H5PdC1)2 (0.02 mmol, 10 
mol%) was then added at room temp. and the mixture was stirred until a 
black suspension was formed; B and C; A mixture of 2 (0.2 mmol), 4 (0.2 
mmol) and allyltributylstannane (0.2 mmol) was dissolved in CH2C12 (5 
ml). To the mixture was added BF3.0Et2 (0.8 mmol) (method B) or SnC14 
(method C) at -78 "C and the mixture was stirred for 1 h. Ratios were 
determined by IH NMR. C The imine structures are as follows; 2h; p-  
(N02)C6&CH=NPh, 2i; p-MeC&CH=N@-COzMeC6H4)1 2j; c- 
hexCH=N@-COzMeC&). 

process in addition to the strong coordinative preference of the 
nitrogen atom are key steps in this unusual chemoselectivity; 
the Lewis acid promoted reaction never proceeds via a catalytic 
process. 

Consequently, both the Pd-coordination characteristics and 
the catalytic cycle produce the unusual chemoselectivity. 
Irrespective of the precise mechanism, the reversed che- 
moselectivity is synthetically useful. 

Footnotes 
t The reactivity of crotylstanane l b  was typical. The reaction of l b  with 
benzaldehyde gave the adduct in only 37% yield after 4 d at room temp., 
whereas the reaction with the corresponding imine afforded the allylated 
amine in essentially quantitative yield. 
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Scheme 1 

$ PdC12(PPh3)2, which was used in the allylation shown in Table 1, also 
worked in the chemoselective allylation, but ( ~ 3 - c ~ H ~ P d C l ) ~  gave better 
results. 
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