Selective complexation of disaccharides by a novel D_2 -symmetrical receptor in **protic solvent mixtures**

Ulf Neidlein and Frangois Diederich*

Lahoratorium fur Organische Chemie, ETH-Zentrum, Universitatstrasse 16, CH-8092 Zurich, Switzerland

The synthesis of an optically active, 1,l'-binaphthylderived cyclophane receptor with a preorganized central cavity lined with four anionic phosphodiester groups for ionic hydrogen bonding is described. In competitive protic solvent mixtures, this receptor forms stable 1 : **1 complexes with disaccharides whereas the smaller monosaccharides are not significantly bound.**

Studies of carbohydrate complexation by artificial receptors¹ increasingly complement biological investigations2 in the search for a molecular level understanding of the complex carbohydrate binding processes in nature.³ We recently prepared the tetraanionic cyclophane (R, R, R, R) - $(-)$ -1 and observed 1:1 host-guest inclusion complexation with a suitably sized monosaccharide such as octyl β -D-glucoside in CD₃CN/ CD₃OD 98 : 2 (v/v) .⁴ The formation of ionic hydrogen bonds⁵ between the anionic phosphodiester groups lining the cavity in (R, R, R, R) -(-)-1 and the hydroxy groups of the pyranoside was shown to provide the major driving force for this complexation process in the presence of a protic co-solvent which competes for the H-bonding sites of the two binding partners. Here we describe the synthesis of the new cyclophane receptor (R, R, R, R) - $(-)$ - $\overline{2}$ and demonstrate that it discriminates in protic solvent mixtures between disaccharides, which are bound, and monosaccharides, which are not bound.

For the synthesis of *(R,R,R,R)-(-)-2* (Scheme l), dialkynylated 1,l '-binaphthalene *(R)-(+)-34* was mono-deprotected to give (R) - $(-)$ - $\overline{4}$, which was cross-coupled to 1,4-diiodobenzene under formation of $(R,R)-(-)$ -5.⁶ Alkyne-deprotection to $(R,R)-(-)$ -6 followed by Glaser-Hay coupling⁷ afforded (R, R, R, R) - $(-)$ -7 which was transformed into the target compound (R, R, R, R) - $(-)$ -2 under the conditions previously applied to produce (R, R, R, R) - $(-)$ -1.⁴

In the average D_2 -geometry of $(R,R,R,R)-(-)$ -2, the distances between the P-atoms in the highly preorganised rectangular cavity are 11.6 \times 7.2 Å, which represents a significant enlargement of the binding site as compared to (R, R, R, R) - $(-)$ -1 with a squaric cavity of 7.2×7.2 Å.

Complexation of disaccharides **8-10** was investigated by 1H NMR titrations at 300 K in CD_3CN/CD_3OD 88:12 (v/v) in

Table 1 Association constants K_a and binding free enthalpies $-\Delta G^0$ from **'H NMR binding titrations for 1** : **1 complexes of mono- and di-saccharides with** (R, R, R, R) -(-)-2 **in CD₃CN/CD₃OD 88 : 12** *(v/v)* **at 300 K**

Substrate ^{a}	K_a/b dm^3 mol ⁻¹	$-\Delta G^{0}$ / kcal mol -1	$\Delta\delta_{\rm max,obs}c/$ ppm	$\Delta\delta_{\rm sat}$ c/ ppm
8	11000	5.5	0.077	0.11
9	12500	5.6	0.085	0.11
10 11	10750 no binding	5.5	0.127	0.18

^{*a*} The substrate concentration was held constant at *ca*. 2.5×10^{-4} mol dm⁻³ and the receptor concentration varied between 0.3 and 4.5×10^{-4} mol dm^{-3} . *b* The reproducibility of the K_a values was $\pm 20\%$ in duplicate and **triplicate runs.** *c* **Also shown are the complexation-induced changes in** chemical shift at saturation binding $(\Delta \delta_{sat})$, and the maximum shifts $(\Delta \delta_{\text{max obs}})$ observed for the anomeric protons H–C(1).

which the upfield changes in chemical shifts of the anomeric proton H-C(1) upon addition of (R, R, R, R) -(-)-2 were followed (Table 1). (R, R, R, R) -(-)-2 exhibited a high binding affinity (K_a) $(Table 1)$. (R, R, R, R) - $(-)$ -2 exhibited a high binding affinity $(K_a \approx 10^4 \text{ dm}^3 \text{ mol}^{-1}, -\Delta G^0 \approx 5.5 \text{ kcal mol}^{-1}, 1 \text{ cal } = 4.184 \text{ J})$ for all three disaccharides **8-10.** Whereas no selectivity among these substrates was observed, the selectivity over monosaccharides was very high. Upon addition of more than 2 equiv. of the receptor to a 0.25 mmol dm⁻³ solution of octyl β -Dglucoside **11,** no change in chemical shift of its anomeric proton $H-C(1)$ was observed within the error range ($\Delta\delta \pm 0.001$ ppm), while disaccharides **8-10** produced 60-80% saturation binding

Chem. Commun., **1996 1493**

Scheme 1 Synthesis of (R, R, R, R) - $(-)$ -2. *Reagents and conditions: i,* $Na₂B₄O₇$ 10 H₂O, THF/H₂O 1 : 1, 37%; ii, [Pd₂(dba)₃], PPh₃, Et₃N, C₆H₄I₂, toluene, 50%; iii, K2C03, MeOH, THF. 91%; iv, CuCl, *N,N,N',N'* tetramethylethylenediamine (TMEDA), CH₂Cl₂, air, 20%; v, KOH, MeOH-THF, 89%; vi, POCl₃, Et₃N, CH₂Cl₂; then THF, H₂O, 40 °C; then Dowex (Bu₄N⁺), CHCl₃/MeCN 1:1, 63%.

under these conditions. This high selectivity $[\Delta(\Delta G^0) > 3]$ kcal mol^{-1}] is readily explained by the size of the cavity of (R, R, R, R) - $(-)$ -2, which fits disaccharides well but, unlike the cavity in (R, R, R, R) - $(-)$ -1, is much too spacious for incorporating a monosaccharide under formation of ionic H-bonds to all four convergent phosphates. Apparently, ionic hydrogen bonding of **11** to only the two phosphate groups in $(R, R, R, R) = (-) - 2$,

which are separated by 7.2 Å , is not sufficient to establish stable complexation in the competitive protic solvent mixture used. In pure CD_3CN , (R,R,R,R) -(-)-2 was found to bind monosaccharide **11**, but with a host-guest stoichiometry higher than 1 : 1 and presumably 2 : **1** as suggested by *Job* plot analysis. Octyl β -D-maltoside δ displayed no binding to monophosphate (R) - $(-)$ -12 in CD₃CN/CD₃OD 88:12 (v/v) in concentration ranges below 10 mmol dm-3. Simultaneous ionic hydrogen bonding between the substrate and the four encircling phosphodiesters of (R, R, R, R) -(-)-2 is necessary for stable complexation to occur in the competitive solvent mixture.

Support by the Chiral 2 program of the Swiss National Science Foundation is gratefully acknowledged.

References

- K. Kobayashi, Y. Asakawa, Y. Kato and Y. Aoyama, J. *Am. Chem.* Soc., 1992,114, 10 307; K. M. Bhattarai, R. P. Bonar-Law, A. **P.** Davis and B. A. Murray, J. *Chem.* Soc., *Chem. Commun.,* 1992,752; K. Kondo, Y. Shiomi, M. Saisho, T. Harada and *S.* Shinkai, *Tetrahedron,* 1992, 48, 8239; R. Liu and **W.** C. Still, *Tetrahedron Lett.,* 1993, 34, 2573; P. B. Savage and **S.** H. Gellman, *J. Am. Chem.* Soc., 1993,115, 10 448; A. V. Eliseev and H. **J.** Schneider, J. *Am. Chem.* Soc., 1994, 116, 6081; J. Jiménez-Barbero, E. Junquera, M. Martín-Pastor, S. Sharma, C. Vicent and S. Penadés, *J. Am. Chem. Soc.*, 1995, 117, 11 198; R. P. Bonar-Law and J. K. M. Sanders, *J. Am. Chem. Soc.*, 1995, 117, 259; J. Cuntze, L. Owens, V. Alcizar, P. Seiler and F. Diederich, *Helv. Chim. Acta,* 1995, 78, 367; M. Inouye, T. Miyake, M. **Furusyo** and H. Nakazumi, J. *Am. Chem.* SOC., 1995,117, 12 416.
- F. A. Quiocho, *Pure Appl. Chem.,* 1989,61, 1293; R. U. Lemieux, *ACS Symp. Ser.,* 1991, 519, *5.*
- N. Sharon and H. Lis, *Sci. Am.,* 1993,268 (l), 74.
- S. Anderson, U. Neidlein, V. Gramlich and F. Diederich, *Angew. Chem,, Int. Ed. Engl.,* 1995, 34, 1596.
- 5 G. Das and A. Hamilton, *J. Am. Chem. Soc.*, 1994, 116, 11 139.
- S. Takahashi, Y. Kuroyama, K. Sonogashira and N. Hagihara, *Synthesis,* 1980, 627.
- A. S. Hay, J. *Org. Chem.,* 1962, 27, 3320.

Received, 10th April 1996; Corn. 6102484J