C₆₀ end-capped polystyrene stars

Eric Cloutet,^{a,b} Yves Gnanou,^a Jean-Luc Fillaut^b and Didier Astruc^{*b}

 ^a Laboratoire de Chimie des Polymères Organiques, URA CNRS No. 1192, ENSCPB, Université Bordeaux I, Avenue Pey Berland-B.P. 108, 33402 Talence Cédex, France
 ^b Laboratoire de Chimie Organique et Organométallique, URA CNRS No. 35, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cédex, France

A hexaarm hexachloropolystyrene star polymer 1 (\overline{M}_n = 18000 g mol⁻¹) is functionalized by reaction with Me₃SiN₃ to give the hexaazido star polymer 2; reduction of 2 by PPh₃/H₂O leads to the hexaamine star polymer 3, and reaction of 2 with a two-fold excess of C₆₀ gives the hexafullerene star polymer 4, characterized by size-exclusion chromatography, NMR, thermal-gravimetry analysis and CV.

The functionalization of polymers is of great interest inter alia for the syntheses of dendritic polymers,¹ for the design of electronic devices² and catalysts³ and for approaches to biomaterials.⁴ In particular, precisely defined star multiarm polymers constitute a new area which is promising because of their awaited specific topological and mechanical properties.5,6 Recently, we have reported the synthesis of the hexaarm star shaped polystyrene 1 by living cationic polymerization using the core-first method.⁶ The control of molecular weight was obtained for these star polymers up to 90 000 g mol⁻¹, with polydispersities around 1.1.6 Here we report the functionalization of the six branch termini of these polymers with azido, amino and C₆₀ groups. There are a number of recent interesting reports of C₆₀-derivatized polymers^{7,8} and dendrimers⁹ including polystyrene,⁷ but this is the first example of a star polymer containing a precise number of C_{60} units. In the case of the hexaarm star polystyrene 1,6 the average molecular weight, determined by light scattering, is $\overline{M}_n = 18000 \text{ g mol}^{-1}$, *i.e.* 3000 g mol⁻¹ for each branch (30 styrene units per branch). The functionalization of 1 with six C_{60} units leads to a huge polyelectronic reservoir system.

Scheme 1 Reagents and conditions: i, Me_3SiN_3 , $TiCl_4$, CH_2Cl_2 , -15 °C; ii, PPh₃/H₂O, THF, room temp.

Treatment of the polymer 1, which bears six chlorides in benzylic positions, with a 100-fold excess of Me_3SiN_3 and 20-fold excess of TiCl₄ in CH₂Cl₂ for 12 h at -15 °C gave the hexaazide 2 (Scheme 1). The complete replacement of the chlorides by azides can be monitored by the shift of the benzylic proton from δ_H 4.5 to 3.9 in the ¹H NMR spectrum. A strong band at 2097 cm⁻¹ and a medium-intensity band at 1600 cm⁻¹

Scheme 2 Synthesis of 4 Reagents and conditions: i, chlorobenzene, reflux

Fig. 1 GPC trace in chlorobenzene of the hexa-C₆₀ polystyrene 4 ($\overline{M}_w/\overline{M}_n = 1.4$); $\Delta n =$ variation of the refractive index

Chem. Commun., 1996 1565

appear for the azide group in the IR spectrum (CH₂Cl₂). Reduction of the hexaazide **2** by a 10-fold excess of PPh₃/H₂O at 20 °C in THF for 14 h gave the hexaamine **3**, the reaction being monitored again by the shift of the benzylic proton from δ_H 3.9 to between δ_H 1 and 2.3 also containing the CH and CH₂ protons of the polystyrene backbone. The two IR bands mentioned above disappear. The two new bands at 3430 (medium) and 1668 cm⁻¹ (strong) are characteristic of the primary amine function.

Reaction of a two-fold excess of C₆₀ per azide function of the hexaarm polymer 2 in refluxing PhCl for 1 d gave a brown solution of 4 (Scheme 2). After removing the solvent under vacuum, the addition of THF solubilized 4, whereas insoluble C₆₀ was filtered off. The THF solution was then concentrated and 4 was precipitated by the addition of methanol at -20 °C and 4 purified by repeated precipitation from hexane with methanol at -20 °C. Size-exclusion chromatography of 4 in PhCl indicated a monomodal distribution (Fig. 1). The ¹H NMR spectrum of 4 showed the total disappearance of the benzylic proton near to the azido group at $\delta_{\rm H}$ 3.9. The main features of this spectrum are the broad absorption between δ_H 0.8 and 2.3 due to the CH and CH₂ units (including the last one) of the polystyrene backbone and the signals of the aromatic protons of the styrene units between $\delta_{\rm H}$ 6.2 and 7.4 (CDCl₃). The peaks corresponding to C_{60} are located between δ_C 140 and 148 in the ¹³C NMR spectrum (CDCl₃). This ¹³C NMR spectrum also contains the quaternary carbon signal of the polystyrene backbone at $\delta_{\rm C}$ 146–148, the aromatic CH signals at $\delta_{\rm C}$ 126–128 and the aliphatic polystyrene signals at $\delta_{\rm C}$ 41

Fig. 2 Thermal gravimetric analysis of 4 heated under nitrogen at 10 $^{\circ}\mathrm{C}$ min^{-1}

Fig. 3 Cyclic voltammogram of 4 (9 \times 10⁻⁵ mol dm⁻³) on Pt with Bu₄NBF₄ (10⁻³ mol dm⁻³) in toluene: acetonitrile (1:4) with ferrocene–ferricinium ion as the reference redox couple. Sweep rate: 100 mV s⁻¹.

(CH) and 44-46 (CH₂). This indicates that no unreacted branch remained in the C₆₀-derivatized polymer. Thermal-gravimetry analysis showed only two plateaus (Fig. 2). The polystyrene branches decomposed first at 200–450 °C and then the C_{60} units decomposed between 470 and 570 °C. The relative heights found for these two transitions (77.3:22.7) correspond rather well to the relative masses of the polystyrene branches and C_{60} units (80.6:19.4). The CV of 4 in MeCN-toluene (20:80) on a Pt cathode at -15 °C using Bu₄NBF₄ (10⁻³ mol dm⁻³) as the electrolyte shows three waves at $E^{\circ} = -1.00, -1.40$ and -1.90V vs. ferrocene-ferricinium before the solvent front, corresponding to the three first reduction waves of C₆₀-derived compounds.¹² The shapes of the waves are in accordance with a six-electron transfer for which the redox centres are independent, i.e. each wave behaving as a one-electron wave^{13,14} (Fig. 3). The number of electrons for the first wave (for best accuracy) can be estimated to $n_p = 5 \pm 1$ using the equation given by Bard and Anson;¹³ eqn. (1), where I, c and M

$$n_{\rm p} = \frac{I_{\rm p}/c_{\rm p}}{I_{\rm m}/c_{\rm p}} \left(\frac{M_{\rm p}}{M_{\rm m}}\right)^{0.275} \tag{1}$$

are the intensity, concentration and molar mass respectively (the subscripts p and m refer to 4 and C_{60} respectively).

We thank the Institut Universitaire de France (DA), the CNRS, the MRE, the Université Bordeaux I and the Région Aquitaine for financial support.

Footnote

* E-mail: astruc@cribx1.u-bordeaux.fr

References

- 1 N. Ardoin and D. Astruc, Bull. Soc. Chim. Fr., 1995, 132, 875.
- 2 J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
- 3 Homogeneous Transition-Metal Catalyzed Reactions, ed. W. R. Moser and D. W. Slocum, ACS Series 230, ACS, Washington, DC, 1992.
- 4 H. Ringsdorf, B. Schlarb and J. Vensmer, Angew. Chem., 1988, 100, 117; Angew. Chem., Int. Ed. Engl., 1988, 27, 113; J. H. Fendler, Acc. Chem. Res., 1980, 13, 7.
- 5 J. Y. Chang, H. J. Ji, M. J. Han, S. B. Rhee, S. Chleong and M. Yoon, *Macromolecules*, 1994, 27, 1376; M. Schappacher and A. Deffieux, *Macromolecules*, 1992, 25, 6744; H. Shoki, M. Sawamoto and I. Higashimura, *Makromol. Chem.*, 1992, 13, 2027.
- 6 E. Cloutet, J.-L. Fillaut, Y. Gnanou and D. Astruc, J. Chem. Soc., Chem. Commun., 1994, 2433.
- 7 C. J. Hawker, *Macromolecules*, 1994, **27**, 4836; A. G. Camp, A. Lary and W. T. Ford, *Macromolecules*, 1995, **28**, 7959; C. Bunker, G. Lawson and Y. Sun, *Macromolecules*, 1995, **28**, 3744.
- Patil and G. W. Schriver, *Macromol. Symp.*, 1995, **91**, 73;
 N. J. Zhang, S. R. Schricker, F. Wudl, M. Prato, M. Maggini and
 G. Scorrano, *Chem. Mater.*, 1995, **7**, 441; D. E. Berglreiter and
 H. N. Gray, *J. Chem. Soc., Chem. Commun.*, 1993, 645; O. Patil,
 G. W. Schriver, B. Carstensen and R. D. Lundberg, *Polym. Bull*, 1993, **30**, 187; A. Hirsch, *Adv. Mater.*, 1993, **5**, 859; D. A. Loy and
 R. A. Assink, *J. Am. Chem. Soc.*, 1992, **114**, 3977.
- 9 C. J. Hawker, K. L. Wooley and J. M. J. Fréchet, J. Chem. Soc., Chem. Commun., 1994, 925; K. L. Wooley, C. J. Hawker, J. M. J. Fréchet, F. Wudl, G. Srdanw, S. Shi, C. Li and M. Kao, J. Am. Chem. Soc., 1993, 115, 9836.
- 10 D. A. Tomalia, A. N. Naylor and W. A. Goddart III, Angew. Chem., Int. Ed. Engl., 1990, 29, 138.
- 11 P.-G. De Gennes and H. Hervet, J. Phys. Lett., 1983, 44, L-351.
- 12 A. Hirsch, *The Chemistry of the Fullerenes*, Thieme, Stuttgart, 1994, ch. 2.
- 13 J. B. Flanagan, S. Margel, A. J. Bard and F. C. Anson, J. Am. Chem. Soc., 1978, 100, 4248.
- 14 D. Astruc, in *Electron-Transfer and Radical Processes in Transition-Metal Chemistry*, VCH, New York, 1995, ch. 2.

Received, 12th March 1996; Com. 6/01736C