C₆₀ end-capped polystyrene stars

Eric Cloutet,^{*a*,*b* Yves Gnanou,^{*a*} Jean-Luc Fillaut^{*b*} and Didier Astruc^{**b*}}

^aLaboratoire de Chimie des Polym2res Organiques, URA CNRS No. 1192, ENSCPB, Universite' Bordeaux I, Avenue Pey Berland-B.P. 108,33402 Talence Ce'dex, France b Laboratoire de Chimie Organique et Organome'tallique, URA CNRS No. 35, Universite' Bordeaux I, 351, Cours de la Libération, 33405 Talence Cédex, France

A hexaarm hexachloropolystyrene star polymer 1 (\overline{M}_n = 18000 g mol^{-1}) is functionalized by reaction with Me_3SiN_3 **to give the hexaazido star polymer 2; reduction of 2 by PPh3/H20 leads to the hexaamine star polymer 3, and reaction of 2 with a two-fold excess of** \hat{C}_{60} **gives the hexafullerene star polymer 4, characterized by size-exclusion chromatography, NMR, thermal-gravimetry analysis and CV.**

The functionalization of polymers is of great interest *inter alia* for the syntheses of dendritic polymers,¹ for the design of electronic devices² and catalysts³ and for approaches to biomaterials.⁴ In particular, precisely defined star multiarm polymers constitute a new area which is promising because of their awaited specific topological and mechanical properties.5.6 Recently, we have reported the synthesis of the hexaarm star shaped polystyrene **1** by living cationic polymerization using the core-first method.6 The control of molecular weight was obtained for these star polymers up to 90 000 g mol⁻¹, with polydispersities around **1.1.6** Here we report the functionalization of the six branch termini of these polymers with azido, amino and C_{60} groups. There are a number of recent interesting reports of C_{60} -derivatized polymers^{7,8} and dendrimers⁹ including polystyrene,7 but this is the first example of a star polymer containing a precise number of C_{60} units. In the case of the hexaarm star polystyrene 1,6 the average molecular weight, determined by light scattering, is $\overline{M}_n = 18000$ g mol⁻¹, *i.e.* 3000 **g** mol-l for each branch (30 styrene units per branch). The functionalization of 1 with six C_{60} units leads to a huge polyelectronic reservoir system.

Scheme 1 *Reagents and conditions: i, Me₃SiN₃, TiCl₄, CH₂Cl₂,* -15 *°C;* **ii, PPh3/H20,** THF, **room temp.**

Treatment of the polymer 1, which bears six chlorides in benzylic positions, with a 100-fold excess of Me₃SiN₃ and 20-fold excess of TiCl₄ in CH₂Cl₂ for 12 h at -15° C gave the hexaazide **2** (Scheme 1). The complete replacement of the chlorides by azides can be monitored by the shift of the benzylic proton from δ_H 4.5 to 3.9 in the ¹H NMR spectrum. A strong band at 2097 cm⁻¹ and a medium-intensity band at 1600 cm⁻¹

Scheme 2 Synthesis of 4 *Reagents and conditions:* **i, chlorobenzene, reflux**

Fig. 1 GPC trace in chlorobenzene of the hexa-C₆₀ polystyrene 4 $(\overline{M}_{w}/\overline{M}_{n} =$ 1.4); Δn = variation of the refractive index

Chem. Commun., **1996 1565**

appear for the azide group in the IR spectrum (CH_2Cl_2) . Reduction of the hexaazide $\hat{2}$ by a 10-fold excess of PPh_3/H_2O at 20°C in THF for 14 h gave the hexaamine **3,** the reaction being monitored again by the shift of the benzylic proton from δ_H 3.9 to between δ_H 1 and 2.3 also containing the CH and CH₂ protons of the polystyrene backbone. The two IR bands mentioned above disappear. The two new bands at 3430 (medium) and 1668 cm^{-1} (strong) are characteristic of the primary amine function.

Reaction of a two-fold excess of C_{60} per azide function of the hexaarm polymer **2** in refluxing PhCl for 1 d gave a brown solution of **4** (Scheme 2). After removing the solvent under vacuum, the addition of THF solubilized **4,** whereas insoluble C_{60} was filtered off. The THF solution was then concentrated and 4 was precipitated by the addition of methanol at -20° C and **4** purified by repeated precipitation from hexane with methanol at -20 °C. Size-exclusion chromatography of 4 in PhCl indicated a monomodal distribution (Fig. 1). The **lH** NMR spectrum of **4** showed the total disappearance of the benzylic proton near to the azido group at $\delta_{\rm H}$ 3.9. The main features of this spectrum are the broad absorption between $\delta_{\rm H}$ 0.8 and 2.3 due to the CH and CH₂ units (including the last one) of the polystyrene backbone and the signals of the aromatic protons of the styrene units between $\delta_{\rm H}$ 6.2 and 7.4 (CDCl₃). The peaks corresponding to C_{60} are located between δ_C 140 and 148 in the ¹³C NMR spectrum (CDCl₃). This ¹³C NMR spectrum also contains the quaternary carbon signal of the polystyrene backbone at δ_c 146-148, the aromatic CH signals at δ_c 126–128 and the aliphatic polystyrene signals at δ_c 41

Fig. 2 Thermal gravimetric analysis of **4** heated under nitrogen at 10°C $min₁$

Fig. 3 Cyclic voltammogram of 4 $(9 \times 10^{-5} \text{ mol dm}^{-3})$ on Pt with $\overline{Bu}_4NBF_4 (10^{-3} \text{ mol dm}^{-3})$ in toluene : acetonitrile (1:4) with ferroceneferricinium ion as the reference redox couple. Sweep rate: 100 mV s^{-1} .

 (CH) and 44-46 $(CH₂)$. This indicates that no unreacted branch remained in the C_{60} -derivatized polymer. Thermal-gravimetry analysis showed only two plateaus (Fig. 2). The polystyrene branches decomposed first at 200-450 \degree C and then the $\rm \dot{C}_{60}$ units decomposed between 470 and 570°C. The relative heights found for these two transitions (77.3 : 22.7) correspond rather well to the relative masses of the polystyrene branches and C_{60} units (80.6 : 19.4). The CV of **4** in MeCN-toluene (20 : **SO)** on a Pt cathode at -15° C using Bu₄NBF₄ (10⁻³ mol dm⁻³) as the electrolyte shows three waves at $E^{\circ} = -1.00, -1.40$ and -1.90 *V vs.* ferrocene-ferricinium before the solvent front, corresponding to the three first reduction waves of C_{60} -derived compounds.12 The shapes of the waves are in accordance with a six-electron transfer for which the redox centres are independent, *i.e.* each wave behaving as a one-electron wave^{13,14} (Fig. 3). The number of electrons for the first wave (for best accuracy) can be estimated to $n_p = 5 \pm 1$ using the equation given by Bard and Anson;13 eqn. (l), where I, *c* and *^M*

$$
n_{\rm p} = \frac{I_{\rm p}/c_{\rm p}}{I_{\rm m}/c_{\rm p}} \left(\frac{M_{\rm p}}{M_{\rm m}}\right)^{0.275} \tag{1}
$$

are the intensity, concentration and molar mass respectively (the subscripts p and m refer to 4 and C_{60} respectively).

We thank the Institut Universitaire de France (DA), the CNRS, the MRE, the Université Bordeaux I and the Région Aquitaine for financial support.

Footnote

* E-mail: astruc@cribxl .u-bordeaux.fr

References

- 1 N. Ardoin and D. Astruc, *Bull. SOC. Chim. Fr.,* 1995, 132, 875.
- 2 J. M. Lehn, *Supramolecular Chemistry,* VCH, Weinheim, 1995.
- 3 *Homogeneous Transition-Metal Catalyzed Reactions,* ed. W. R. Moser and D. W. Slocum, ACS Series 230, ACS, Washington, DC, 1992.
- 4 H. Ringsdorf, B. Schlarb and J. Vensmer, *Angew. Chem.,* 1988, 100, 117; *Angew. Chem., Int. Ed. Engl.,* 1988, 27, 113; J. H. Fendler, *Acc. Chem. Res.,* 1980, 13, 7.
- *5* J. Y. Chang, H. J. Ji, M. J. Han, **S.** B. Rhee, **S.** Chleong and M. Yoon, *Macromolecules,* 1994, 27, 1376; M. Schappacher and A, Deffieux, *Macromolecules,* 1992, 25, 6744; H. Shoki, M. Sawamoto and **I.** Higashimura, *Makromol. Chem.,* 1992, 13, 2027.
- 6 E. Cloutet, J.-L. Fillaut, **Y.** Gnanou and D. Astruc, *J. Chem. SOC., Chem.* Commun., 1994, 2433.
- 7 C. J. Hawker, *Macromolecules,* 1994, 27, 4836; A. G. Camp, A. Lary and W. T. Ford, *Macromolecules,* 1995, **28,** 7959; C. Bunker, G. Lawson and Y. Sun, *Macromolecules*, 1995, 28, 3744.
- 8 *0.* Patil and G. W. Schnver, *Macromol. Symp.,* 1995, 91, 73; N. J. Zhang, **S.** R. Schricker, F. Wudl, M. Prato, M. Maggini and G. Scorrano, *Chem. Mater.,* 1995, 7, 441; D. E. Berglreiter and H. N. Gray, *J. Chem. SOC., Chem. Commun.,* 1993, 645; *0.* Patil, G. **W.** Schriver, B. Carstensen and R. D. Lundberg, *Polym. Bull,* 1993, 30, 187; A. Hirsch, *Adv. Murer.,* 1993, 5, 859; D. A. Loy and R. A. Assink, *J. Am. Chem. SOC.,* 1992,114, 3977.
- 9 C. J. Hawker, K. L. Wooley and J. M. J. Fréchet, *J. Chem. Soc., Chem.* Commun., 1994, 925; K. L. Wooley, C. J. Hawker, J. M. J. Fréchet, F. Wudl, G. Srdanw, **S.** Shi, C. Li and M. Kao, *J. Am. Chem. SOC.,* 1993, 115,9836.
- 10 D. A. Tomalia, A. N. Naylor and **W.** A. Goddart **111,** *Angew. Chem., Int. Ed. Engl.,* 1990, 29, 138.
- 11 P.-G. De Gennes and H. Hervet, *J. Phys. Lett.,* 1983, 44, L-351.
- 12 A. Hirsch, *The Chemistry of the Fullerenes,* Thieme, Stuttgart, 1994, ch. 2.
- 13 J. B. Flanagan, **S.** Margel, A. J. Bard and F. C. Anson, *J. Am. Chem. SOC.,* 1978,100,4248.
- 14 D. Astruc, in *Electron-Transfer and Radical Processes in Transition-Metal Chemistry,* VCH, New York, 1995, ch. 2.

Received, 12th March 1996; Corn. 6/01 736C