Palladium-catalysed carbonyl allylation by 2-methylenepropane-1,3-diol

Yoshiro Masuyama,* Masaaki Kagawa and Yasuhiko Kurusu

Department of Chemistry, Sophia University 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

2-Methylenepropane-1,3-diol first allylates an aldehyde exclusively at the allylic alcohol moiety at room temperature and then, at 50 °C, allylates another aldehyde also at the allylic alcohol moiety, in the presence of a catalytic amount of PdCl₂(PhCN)₂ with tin(II) chloride.

Allylic alcohols allylate various carbonyl compounds with regio-, chemo- and diastereo-selectivity in the presence of a catalytic amount of PdCl₂(PhCN)₂ and two equimolar amounts of tin(II) chloride.¹ Here we report that 2-methylenepropane-1,3-diol, bearing two identical allylic alcohol moieties, has been applied to (i) selective monoallylation, occasionally followed by cyclization to 2-substituted 4-methylenetetrahydrofurans, in

Table 1 Monoallylation of some aldehydes by 1a with tin(II) chloride^a

Entry	R^1	\mathbb{R}^2	<i>t/</i> h	Yield ^b (%)	
				2	3
1	Ph	Н	65	73	11
2	$3,4-(CH_2O_2)C_6H_3$	H	63	62	9
3^c	4-MeO ₂ CC ₆ H ₄	H	65	62	3
4	PhCH ₂ CH ₂	H	42	57	9
5¢	PhCH ₂ CH ₂	Н	116	51	0
6	C_6H_{13}	Н	70	63	9
7	Ph	Me	90	27	0

^a Monoallylation of aldehydes (1 mmol) by **1a** (2 mmol) was carried out with $PdCl_2(PhCN)_2$ (0.02 mmol) and $SnCl_2$ (2 mmol) at room temp. in DMF (3 ml). ^b Isolated yields. ^c THF was used as a solvent.

DMF or THF and (ii) tandem diallylation of two different carbonyl compounds or 1,2-diones in 1,3-dimethylimidazoli-din-2-one (DMI)– H_2O or THF– H_2O , using a Pd catalyst and tin(II) chloride.

2-Methylenepropane-1,3-diol 1a^{†2} was treated with benzaldehyde in the presence of PdCl₂(PhCN)₂ and SnCl₂ in DMF at room temperature and gave selectively the monoallylated 3-methylene-1-phenylbutane-1,4-diol (2; $R^1 = Ph$; $R^2 = H$, 73%), eqn. (1).‡ The results of the selective monoallylations of some aldehydes by 1a are summarized in Table 1. The use of THF as a solvent lowered the monoallylation yield but enhanced the selectivity (entries 3 and 5). In contrast to diol 1a, the palladium-catalysed reaction of 1,3-dichloro-2-methylenepropane (1b, 2 mmol) and benzaldehyde (1 mmol) with tin(II) chloride (2 mmol) did not produce the monoallylated product 2 but gave selectively the diallylated 1,5-diphenyl-3-methylenepentane-1,5-diol (3; $R^1 = Ph$, $R^2 = H$, 72 h, 92%) at room temperature in DMF. The reaction of 1a (1 mmol) and benzaldehyde (2 mmol) with tin(II) chloride (4.2 mmol) at 50 °C in DMI- H_2O also led to selective diallylation (3; $R^1 = Ph$, R^2 = H. 15 h. 95%). Thus diol 1a was applied to tandem carbonyl allylations with two different aldehydes; first carbonyl allylation with benzaldehyde at room temperature followed by a second carbonyl allylation with heptanal or 3-phenylpropanal at 50 °C, eqn. (2).

Aromatic aldehydes bearing electron-donating groups such as 4-methoxybenzaldehyde and piperonal underwent the addition of 1a with $PdCl_2(PhCN)_2$ – $SnCl_2$ followed by intramolecular nucleophilic substitution (cyclization) at room temperature in THF to produce selectively 2-substituted 4-methylenetetrahydrofurans, eqn. (3). Aliphatic aldehydes and aromatic aldehydes bearing no electron-donating groups did not cause the cyclization even in THF; for example entries 3 and 5 in Table 1. The cyclization does not therefore seem to proceed via intramolecular nucleophilic attack of tin alkoxide to the π -allylpalladium formed from the second allylic alcohol moiety but via formation of a benzylic cation by the leaving trichlorotin oxide (Cl_3SnO) followed by intramolecular nucleophilic attack of allylic alcohol oxygen to its cation (S_N1 -like).³

Intramolecular diallylation of 1,2-diketones by diol 1a with PdCl₂(PhCN)₂–SnCl₂ was achieved in THF–H₂O at room temperature.⁴ This reaction probably proceeds *via* formation of

PhCHO, Pd-SnCl₂, DMF,room temp. OH Ph
$$\frac{PhCHO, Pd-SnCl_2}{DMI-H_2O, Pd-SnCl_2}$$
 Ph $\frac{PhCHO, Pd-SnCl_2}{DMI-H_2O, Ph}$ Ph $\frac{PhCHO, Pd-SnCl_2}{DMI-H_2O, Ph}$ R = C_6H_{13} , $16 \text{ h, } 66\%$ R = $PhCH_2CH_2$, $19 \text{ h, } 81\%$ Ar = 4-MeOC_6H_4 , $62 \text{ h, } 76\%$ Ar = $3.4\text{-(CH}_2O_2)C_6H_3$, $42 \text{ h, } 80\%$

activated 5-membered chelate intermediates **6**, similar to intermolecular diallylation of 1,2-diketones,⁵ to produce only *cis*-4-methylenecyclopentane-1,2-diols **5**, as shown in eqn. (4).§ Dichloride **1b** cannot be efficiently utilized for intramolecular diallylation with benzil (40 °C, 40 h, 5%).

Footnotes

† 2-Methylenepropane-1,3-diol **1a** was prepared by the reaction of 1,3-dichloro-2-methylenepropane **1b** with calcium cabonate for 5 d in refluxing water; bp 125–126 °C/18 mmHg, 65%.

‡ Typical procedure for the monoallylation by 1a with tin(II) chloride is as follows. To a solution of 2-methylenepropane-1,3-diol (1a, 0.18 g, 2 mmol), benzaldehyde (0.11 g, 1 mmol) and tin(II) chloride (0.38 g, 2 mmol) in DMF (3 ml) was added PdCl₂(PhCN)₂ (8 mg, 0.02 mmol). The solution was stirred for 65 h at room temp. under a nitrogen atmosphere and then poured into water (30 ml). The solution was then extracted with diethyl ether—dichloromethane (2:1, 120 ml). The extract was washed with water and then brine and then dried (anhyd. MgSO₄). Evaporation of solvents and purification by column chromatography (Merck silica gel 60 Art. 7734; hexane:ethyl acetate = 3:2) afforded 3-methylene-1-phenylbutane-1,4-diol (2; R¹ = Ph, R² = H, 0.13 g, 73%) and 1,5-diphenyl-3-methylenepentane-1,5-diol (3; R¹ = Ph, R² = H, 0.03 g, 11%).

§ In the diallylation of 1,2-diketones by 2-propen-1-ol with Pd-SnCl₂, the chelation of second carbonyl oxygen to tin in monoallylated trichlorotin

alkoxide intermediates, formed by first carbonyl allylation of 1,2-diketones, has been found to promote the second carbonyl allylation and to control the diastereoselection; see ref. 5. Since intramolecular diallylation of 1,2-diketones by 1a also proceeded at room temp. to produce only one diastereoisomer of 4-methylenecyclopentane-1,2-diols, the chelation of the second carbonyl oxygen to tin occurs and affords *cis*-isomers 5. Neither monoallylated products 6 or *trans*-4-methylenecyclopentane-1,2-diols were detected by thin-layer chromatography. *Selected spectroscopic data* for *cis*-1,2-diphenyl-4-methylenecyclopentane-1,2-diol (5; R = Ph): ¹H NMR (JEOL GX-270, CDCl₃) & 2.83 (dd, *J* 17, 1.7 Hz, 2 H), 3.21 (dd, *J* 17, 1.7 Hz, 2 H), 3.30 (s, 2 H), 5.13 (t, *J* 1.7 Hz, 2 H), 6.93–7.11 (m, 10 H).

References

- J. P. Takahara, Y. Masuyama and Y. Kurusu, J. Am. Chem. Soc., 1992,
 114, 2577; Y. Masuyama, in Advances in Metal-Organic Chemistry, ed.
 L. S. Liebeskind, JAI Press, London, 1994, vol. 3, p. 255.
- 2 A. Mooradian and J. B. Cloke, J. Am. Chem. Soc., 1945, 67, 943.
- 3 For intramolecular nucleophilic attack of tin alkoxide to π-allylpalladium to prepare 2-substituted 4-methylenetetrahydrofurans, see: B. M. Trost and S. A. King, J. Am. Chem. Soc., 1990, 112, 408.
- 4 G. A. Molander and D. C. Shubert, J. Am. Chem. Soc., 1986, 108, 4683
- 5 Y. Masuyama, T. Tsunoda and Y. Kurusu, Chem. Lett., 1989, 1647.

Received, 28th March 1996; Com. 6/02208A