Synthesis and reactivity of tungsten(II) carbonyl η^2 -nitrile complexes: crystal **structure of tetrafluoroterephthalonitrile as a four-electron donor ligand**

Jaqueline L. Kiplinger, Atta M. Arif and Thomas G. Richmond*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA

Treatment of a tungsten(II) carbonyl fluoride complex containing a tridentate monoanionic [C,N,N'] ligand with either pentafluorobenzonitrile or tetrafluoroterephthalo n itrile affords tungsten(π) η ²-nitrile complexes in which **the nitrile ligand functions as a four-electron donor.**

The coordination chemistry of organonitriles is dominated by simple η ¹-coordination utilizing the nitrogen lone pair and the weak bonding is often exploited in synthetic applications where a labile ligand is required to open a coordination site on a metal.¹ As a ligand, the nitrile is appraised as both a weaker σ donor and a weaker π acid than CO.¹ π -Bound nitriles² are very rare but of interest as novel ligands and possible models for isoelectronic dinitrogen and other triple bonds.¹ Of the few η^2 nitrile complexes which have been structurally characterized, most are regarded as electronically saturated by considering the nitrile as a two-electron donor.³ Recently, Etienne⁴ and Harman⁵ and their coworkers reported side-bound η^2 -nitrile complexes in which the nitrile ligand acts as a three- and fourelectron donor, respectively. In this work we report the preparation and characterization of 18e- tungsten(II) carbonyl fluoride η^2 -nitrile complexes along with structural and spectroscopic evidence for the nitrile ligand acting as a four-electron donor.

As depicted in Scheme 1,[†] treatment of a yellow toluene solution of the tungsten(II) fluoride 1⁶ with tetrafluoroterephthalonitrile at 90°C for 4 h affords a brilliant, ruby red solution of **2** which can be isolated as an air-stable red microcrystalline solid in 82% yield upon addition of pentane. Likewise, reaction of **1** with pentafluorobenzonitrile for 10 h in toluene at 90°C yields **3** as an air-stable emerald green crystalline solid in 70% yield after addition of pentane.

Spectroscopic† and crystallographic‡ data are consistent with an q2-(4e)-nitrile formulation. **As** recently noted by Harman and coworkers,⁵ η ²-(4e)-nitriles have low-field ¹³C NMR resonances comparable to those of η^2 -(4e)-alkynes (δ 190-250).7 The 13C{ 1H) NMR spectra for both com- pounds **2** and **3** display a doublet in the region δ 224-226 ($^2J_{CF}$ 18 Hz) for the nitrile carbon which is *trans* to the fluoride ligand. For comparison, the free nitrile in complex **2** exhibits a 13C resonance at δ 107 which is similar to shifts reported for η ¹-(2e)-nitrile complexes.³ Unlike η^2 -(2e)-nitrile complexes for which weak $C=N$ stretches have been reported in the region 1600-1800 cm-l of the IR spectrum, solid-state (KBr) IR spectra for **2** and **3** do not reveal a band which can be assigned to a $C\equiv N$ stretch. However, the presence of the unbound nitrile in **2** is clearly evident in the solution IR spectrum and appears as a weak absorbance at 2246 cm-I.

The nitrile complex **2** was further characterized by X-ray crystallography as it offered a unique opportunity to compare and contrast the metrical parameters of a coordinated and uncoordinated nitrile within the same complex. **As** illustrated in Fig. 1, the geometry around the tungsten (ii) metal centre can be described as roughly octahedral if one considers that the η^2 nitrile ligand occupies a single coordination site $[{\rm C}(2)-{\rm W}-{\rm N}(1)$ $36.5(3)$ ^o]. In this structure, tetrafluoroterephthalonitrile is tightly bound to the tungsten(II) atom with $W-N(1)$ [2.035(8) \AA] and W-C(2) [2.039(9) \AA] bonds which are virtually equal and indicate multiple metal-ligand bonding.⁸ The M-C bond is quite similar to those reported for four-electron donor alkyne ligands in molybdenum (II) and tungsten (II) complexes.⁷ However, the recently described η^2 -(3e)-nitrile niobium(1) complex [Tp*Nb(CO)(PhC=CMe)(PhC=N)] possesses somewhat longer

Scheme 1 Reagents and conditions: i, $C_6F_4(CN)_2-1,4$, -2 CO, 90 °C, toluene, 4 h; ii, C_6F_5CN , -2 CO, 90 °C, toluene, 4 h; iii, CO (g), 90 °C, toluene, 3 h; iv, PhC=CPh, 90 \degree C, toluene, 72 h; NR = no reaction

Fig. 1 Molecular structure of **2.** Selected bond lengths **(A)** and angles *(O):* $W-N(1)$ 2.035(8), $W-C(2)$ 2.039(9), $C(2)-N(1)$ 1.28(1), $C(21)-N(4)$ 1.13(1), C(2)-W-N(1) 36.5(3), N(1)-C(2)-C(3) 129.7(8), C(6)-C(21)-N(4) 177.0(1), C(23)-W-F(1) 161.4(3), N(1)-W-F(1) 161.9(3), C(1)-W-N(2) 164.1(3), C(9)-W-N(3) 155.4(3).

Chem. Commun., **1996 1691**

metal-nitrogen $[2.139(8)$ Å] and metal-carbon $[2.17(1)$ Å] bonds.⁴ The η^2 -(2e)-nitrile complex $[(\eta$ -C₅H₅)₂Mo(MeC \equiv N)] also exhibits significantly longer metal-nitrogen (2.22 A) and metal-carbon (2.11 Å) bonds.³ The coordinated nitrile of tetrafluoroterephthalonitrile in $2 \left[1.28(1)$ Å is lengthened by 0.15 A compared to that of the free nitrile in **2** [1.13(1) A]. The contact carbon **of** the coordinated nitrile is bent with N(1)- C(2)-C(3) 129.7(8)^o and is consistent with substantial sp^2 character in the ligand, a feature found in related η^2 -(4e)-alkyne complexes.7

The majority of the known tungsten(II) and molybdenum(II) alkyne complexes possess carbonyl ligands.⁷ Since the few existing η^2 -(4e)-nitrile complexes do not contain carbonyl ligands it has been postulated that carbonyl and nitrile ligands are incompatible; the carbonyl ligand is a strong π acid and is believed to render the metal unsuitable for binding nitriles in an q2-fashion.5 Thus, the preparation and stability of **2** and **3** are of note.

As noted for other strong π -acceptor ligands, the coordinated C=N in **2** is parallel to the W-CO axis. The orientation adopted by the nitrile allows for maximum overlap of its π_1 with the d_{π} orbital which is orthogonal to the carbonyl donor and acceptor orbitals. The monoanionic chelating nitrogen [C,N,N'] ligand system appears to support a very basic metal centre and allows for maximum overlap between the d_{π} orbitals on the metal and the π orbitals on the highly fluorinated nitrile ligand. Thus, in analogy to the four-electron donor alkyne ligand, the nitrile ligand seems capable of acting simultaneously as a single-faced π acid (through π_{\parallel}) and as a single-faced π base (through π_{\perp}).

The reactivity of the n²-(4e) complex was probed with carbon

The reactivity of the η^2 -(4e) complex was probed with carbon monoxide and diphenylacetylene. As shown in Scheme 1, heating a toluene solution of $\vec{3}$ under 1.5 atm CO (g) to 90 °C for 3 h quantitatively regenerates the tungsten(II) carbonyl fluoride complex **1.** Related q2-alkyne complexes are inert to CO under these conditions.9 In marked contrast, no reaction takes place between **3** and excess diphenylacetylene in toluene even after 72 h at 90° C. The latter reaction cannot be promoted even in coordinating solvents such as acetonitrile or tetrahydrofuran. The nitrile has the ability to slip from an $\eta^2 \rightarrow \eta^1$ binding mode which would enable it to allow the small CO to coordinate and ultimately displace the nitrile ligand. This new mode of reactivity suggests that four-electron donor nitriles may prove to have more diverse reaction chemistry than analogous alkynes.

The authors gratefully acknowledge financial support in the form **of** an AAUW American Fellowship to J. L. K. (1995-1 996) and partial support from the National Science Foundation.

Footnotes

 \dagger All new compounds were characterized by IR, ¹H, ¹³C(¹⁹F), ¹³C(¹⁹F), and 19F NMR spectroscopic methods and satisfactory elemental analyses (C,H,N) were obtained. For ¹³C{¹⁹F} and ¹⁹F NMR spectra, CFCl₃ was used as the external reference at 6 *0.00. Selected spectroscopic data:* **1;** IR v_{CO} 2004s, 1906vs, 1867s cm⁻¹. 2: IR (toluene) v_{CN} 2246w cm⁻¹, **YCO 1930s** cm-l; IR (KBr) **YCN 2245w** cm-I, **YCO 1919s** cm-1. 13C('H) NMR (CD₂Cl₂): δ 237.37 (d, ²J_{CF} 11 Hz, CO), 225.83 (d, ²J_{CF} 18 Hz C≡N), 176.72 (d, $^2J_{CF}$ 5 Hz, *ipso-C*), 107.49 (t, $^3J_{CF}$ 4 Hz, free N=C). ¹⁹F NMR (CD2C12): 6 **-47.04** (s, lF, W-F), **130.47** (m, 2F), **-134.71** (m, **2F). 3:** IR (toluene) **YCO 1926s** cm-I; IR (KBr) **YCO 1917s** cm-1. 13C(**1H)** NMR **176.78** (d, *2Jc-* **5** Hz, *ipso-C).* 19F NMR (CD2C12): 6 **-49.67 (s,** lF, W-F) **-136.34** (m, **2F), -149.06** (app t, IF), **-159.21** (m, 2F). (CD2C12): **6 237.99** (d, *2Jc~* **11** Hz, CO), **224.94** (d, *'JCF* **18** Hz, **NS),**

² *Crystallographic data* for **2**: $C_{21}F_5H_{19}N_4OW$; orthorhombic, space group *Fdd2* (no. **43),** *a* = **26.791(3),** *b* = **34.813(8),** c = **9.446(2) A,** *U* = **8809.57** \AA ³, $Z = 16$ based on 1788 observations at ambient temperature (Mo-K α , $2 < 2\theta < 50^{\circ}$, $\mu = 54.177$ cm⁻¹) with $I > 2\sigma(I)$ and 288 variables to yield $R = 0.0221$, $R_w = 0.0316$. X-Ray quality crystals were grown by diffusion of pentane into a CH2C12 solution of **2.** Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. **1.** Any request to the CCDC for this material should quote the full literature citation and the reference number **182/133.**

References

- **¹**B. N. Storhoff and H. C. Lewis Jr., *Coord. Chem. Rev.,* **1977,23, 1.**
- 2 For a rare example of a mononuclear η^2 -(4e) phosphaalkyne complex see: G. Brauers, M. Green, C. Jones and J. F. Nixon, J. Chem. Soc., Chem. *Commun.,* 1995, 1125. For a bridging μ - η ², η ²-NCMe ligand see: J. L. Eglin, E. Hines, E. J. Valente and J. D. Zubkowski, *Znorg. Chim. Acta,* **1995, 229, 113.**
- **3** T. C. Wright, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. *Chem. SOC., Dalton Trans.,* **1986, 2017;** J. L. Thomas, J. *Am. Chem.* **SOC., 1975,97,5943;** *P.* A. Chetcuti, C. B. Knobler and M. F. Hawthorne, *Organometallics,* **1988,7,650;** S. *J.* Anderson, F. J. Wells, G. Wilkinson, B. Hussain and M. B. Hursthouse, *Polyhedron,* **1988,7, 2615;** M. L. H. Green, A. K. Hughes and P. Mountford, *J. Chem. Soc., Dalton Trans.*, **1991, 1407.**
- **4 P.** Lorente, C. Carfagna, M. Etienne and B. Donnadieu, *Organometallics,* **1996,15, 1090.**
- **5 J.** Barrera, M. Sabat and W. D. Harman, *J. Am. Chem.* **SOC., 1991,113, 8178;** *Organometallics,* **1993, 12, 4381.**
- **6** B. P. Buffn, M. J. Poss, A. M. Arif and T. G. Richmond, *lnorg. Chem.,* **1993, 32, 3805; J.** L. Kiplinger, M. A. King, A. M. Arif and T. G. Richmond, *Organometallics,* **1993, 12, 3382;** J. **L.** Kiplinger, A. M. Arif and T. G. Richmond, *Inorg. Chem.,* **1995,34,399.**
- **7 J.** L. Templeton, *Adv. Organomet. Chem.,* **1989, 29, 1.**
- **8** M. R. Churchill and W. J. Youngs, *Znorg. Chem.,* **1979, 18, 2454.**
- **9 J.** L. Kiplinger and T. G. Richmond, unpublished work.

Received, 23rd April 1996; Corn. 61028140