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The p-oxo-di-p-acetatodiiron(rr1) complex [Fez(hexpy)(O)- 
(OCOMe)2][ClO& {hexpy = 1,2-bis[2-di(2-pyridyl)- 
methyl-6-pyridyl]ethane} efficiently catalyses the 
oxygenation of cyclohexane, methylcyclohexane and 
adamantane in the presence of n-chloroperbenzoic acid. 

Efficient functionalization of alkanes catalysed by metal 
complexes is one of the most exciting research areas in 
chemistry. In biological systems, soluble methane monooxy- 
genase (sMMO) is known to catalyse conversion of methane to 
methanol quantitatively2 and the v-hydroxodiiron(rr1) centre of 
sMMO had been revealed by X-ray crystallography.3 Although 
many artificial sMMO systems have been developed using p- 
oxodiiron(Ir1) complexes and oxidants such as ROOH,475 
H2025.6 and 0 2  (+ electron source),7 the catalytic activity of 
these systems is still lower than that of sMMO. Recently, most 
substrate oxygenations in the artificial systems have been 
demonstrated to proceed via a radical-chain mechanisms which 
differs from that of sMMO. 

We have synthesised a p-oxo-di-p-acetatodiiron(II1) complex 
of a dinucleating hexapyridine ligand, [Fe20(02CMe)2- 
(hexpy)] [C10& 1 { hexpy = 1,2-bis[2-di(2-pyridyl)methyl- 
6-pyridyllethane } aiming to construct a more efficient artificial 
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Table 1 Oxygenationa of alkanes catalysed by 1 

sMMO system. The dinuclear structure of 1 is highly stabilised 
by hexpy.9 Herein, we report a rapid and efficient functionaliza- 
tion of alkanes catalysed by 1 with rn-chloroperbenzoic acid (rn- 
CPBA). 

In a typical reaction, to a CH2C12 (1.5 ml) solution of 1.6 ml 
of cyclohexane and 690 mg of rn-CPBA was added a MeCN- 
CH2C12 (0.3 ml-1.5 ml) solution of 9.7 mg of 1 under Ar with 
vigorious stirring at 25 "C. The reaction was complete within 5 
min and the reaction mixture was analysed by GLC; results are 
summarized in Table 1 .  

This system shows both a large turnover frequency of 70 [mol 
product (mol catalyst)-' min-'1 and a turnover number of 164 
[mol product (mol catalyst)-'] for the formation of cyclohex- 
anol. The turnover frequency in the present system is the largest 
amongst reported values for oxygenations of alkanes catalysed 
by diiron c0mplexes.~7,10 The turnover frequency and the 
turnover number of the present system were unaffected by the 
presence of 0 2 ,  indicating that oxidation does not proceed via a 
radical-chain mechanism. 

Catalyst 1 was extremely stable during oxygenation and 'H 
NMR spectroscopy showed that 80% of 1 remained at the end 
of the reaction. In order to examine the durability of 1 as a 
catalyst, an experiment with repeated addition of rn-CPBA was 
performed under similar conditions. After the fourth addition, 
the turnover number of 1 was 658 (cf 164 X 4 = 656) for the 
formation of cyclohexanol (Fig. 1) indicating no loss in 
activity . 

When (5,10,15,20-tetraphenylporphinato)iron(111) chloride 2, 
which is known as a catalyst for substrate oxygenation,I1 was 
used in place of 1, the turnover number was only ca. 100 after 
the fourth addition of rn-CPBA. The much higher turnover 
number shown by 1 is ascribed to both its higher stability toward 
oxidation and its higher catalytic efficiency. 

In order to detect the active species, we monitored the 
reaction of 1 with rn-CPBA by electronic absorption spectro- 
scopy. However, no prominent spectral changes were observed 

Alkane 
Reaction 
time/min Products 

Turnover 
Yieldsb/% number 

C yclohexane 5 C y clohexanol 
C yclohexanone 
E-Caprolactone 
Chlorocyclohexane 

Adamantanec 20 1 -Adamantan01 
2-Adamantanol 
Adamantanone 

2-, 3- and 4-Methycyclohexanols 
C y clohex ylmethanol 
Methy lc y clohexanones 

Methylcyclohexane 15 1 -Methylcyclohexanol 

41 
17 
12 
3 

41 
10 
6 

26 
25 

12 
0.5 

164 
68 
48 
12 

163 
39 
24 

104 
100 

2 
48 

Reaction conditions: [ l ]  = 2.0 mmol dm-3, [alkanelo = 3.0 mol dm-3, [m-CPBAIo = 0.8 rnol dm-3 in a mixture of CH2C12 (3 ml) and MeCN (0.3 ml). 
h Yields are based on m-CPBA used. c Diluted conditions were used; [ l ]  = 1.67 mmol dm-3, [adamantaneIo = 1.0 mol dm-3, [m-CPBAIo = 0.67 mol dm-3 
in the same solvent system. 
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Fig. 1 Catalytic activity of 1 for the formation of cyclohexanol in the 
reaction of cyclohexane (3.0 mol dm-3) with m-CPBA in CH2C12-MeCN 
(10: 1, V I V )  containing catalyst (0.20 mmol dm-3) under Ar at 25 “C. 0.4 
mmol of m-CPBA was added in each step as indicated by arrows 

even at low temperature. This suggests that the ligand exchange 
of 1 between acetate and m-CPBA is the rate-determining step 
in the catalytic cycle. The slow ligand exchange and the fast 
subsequent oxidation results in very low concentration of the 
active species. m-CPBA was converted to m-chlorobenzoic acid 
(72%) and chlorobenzene (24%) during the reaction. The 
formation of chlorobenzene is rationalized by a homolytic 
scission of an 0-0 bond of m-CPBA followed by a subsequent 
decarboxylation of the generated benzoyloxyl radical. This 
suggests that m-CPBA is consumed via two parallel reaction 
pathways, i.e. homolytic and heterolytic scission of the 0-0 
bond promoted by 1. Heterolytic scission may provide an active 
species [FeIV(0)2FeIv] capable of oxygenating alkane sub- 
strates while homolytic scission does not lead to oxygenated 
products (Scheme 1). 

The reactivity ratios of tertiary : secondary : primary C-H for 
methylcyclohexane and of tertiary : secondary C-H for 
adamantane are 150 : 15 : 1 and 12 : 1, respectively, suggesting a 
radical-rebound mechanism similar to that for sMMO systems.2 
This mechanism is further supported by other findings. When 
chloroform was used as a solvent, the yield of chlorocyclohex- 
ane increased from 3 to 6%. When dibromomethane was used, 
bromocyclohexane was formed in 6% yield. These results 
suggest the formation of the cyclohexyl radical as an inter- 
mediate. 2,6-Di-tert-butyl-4-methylphenol blocked alkane oxy- 
genation completely, also supporting the radical mechanism. 

Further information about the active species was obtained 
from kinetic isotope effect experiments. 1,3-Dideuterioada- 
mantane having two tertiary C-D bonds and two tertiary C-H 

homolytic ‘ 
cI (non-productive) 

Scheme 1 

bonds was used as a substrate. The mass spectral analyses of 
resultant adamantanol revealed an intramolecular kinetic iso- 
tope effect kH/kD of 3.5. A similar intermolecular kinetic isotope 
effect k ~ / k ~  of 3.2 was obtained using an equimolar mixture of 
cyclohexane and perdeuteriated cyclohexane. These values are 
slightly lower (less selective) than those reported for the sMMO 
systems (kH/kD = 4.2-5.1),12 is reasonable because the 
coordination of pyridine groups in 1 instead of carboxylate 
groups as in sMMO destabilises a high valent state of the active 
species generated from 1. 
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