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Treatment of the anionic carbene complex 
[W(=CHPh)(CO)2(q-CsHs)]- with Me1 affords a complex 
trans-[ WMe( = CHPh)(C0)2(q-CSHs)] which isomerises by 
means of an intramolecular methyl to carbene migration 
to afford the q3-benzyl complex 
[W(113-CH(Me)C~s}(Co)2(11'CSH5)3. 

The migration of an alkyl ligand to a coordinated carbene is of 
interest as a method for creating a new C-C bond within the 
coordination sphere of a metal. Such reactions are postulated 
frequently as mechanistic steps in multistep organometallic 
reactions.'" The process is not particularly well characterized 
because of the comparative scarcity of isolable or spectroscop- 
ically identifiable precursors [MR(carbene)L,] (R = alkyl). 
One particular concern is the difference in reactivity between 
alkyl migrations to heteroatom-stabilized (Fischer type) car- 
benes and nonheteroatom-stabilized (Schrock type) carbenes. 
We report here the direct observation of an alkyl migration in 
the nonheteroatom-stabilized system [MR(C0)2(=CR1R2)- 
(q-C5H5)] (M = group 6 metal; R = alkyl; =CRlR2 = 
nonheteroatom-stabilized carbene). 

The reaction of Me1 with the anion [W(=CHPh)(CO),(q- 
C5H5)]- 1 in thf at -80 "C results in a solution containing 
trans- [WMe(=CHPh)(CO)2(q-C5H5)], trans-2. This complex is 
isolable (34%) provided work up is prompt and it has been fully 
characterised.? In particular, there is a high frequency reso- 
nance in the *H NMR spectrum at 6 12.17 with 183W satellites 
for the X H P h  proton. The methyl protons resonate at 6 0.50 
and also possess satellites due to I83W. 

Complex trans-2 undergoes a rearrangement in thf, toluene, 
or hexane to give the known benzyl complex [W(C0)2{?3- 
CH(Me)Ph} (q-C5H5)] 3.7 The rearrangement occurs in high 
yield (73%) and is complete after 2 h at ambient temperature in 
thf. A small amount of another complex is observed during the 
rearrangement, spectroscopically identified (IR, lH NMR)S as 
trans-[WH(CH2=CHPh)(C0)2(q1-CSHs>l trans-4.8 We favour 
the mechanism shown in Scheme 1 for the formation of 3, with 
a reversible (3-elimination path affording trans-4. 

This compares to our recently reported migration of a methyl 
to a heteroatorn-stabilized carbene in the reaction of Me1 with 
[Mo(CO)~{ = C(NMe2)Ph}(q-C5H5)]-. This reaction gives 
[Mo(CO)~{ q2-CH2CH(Ph)NMe2 } (q-C5H5)]9 in which the het- 
eroatom rather than the phenyl becomes coordinated to the 
metal in a reaction complete after only ca. 1 min at -70 "C. 
Because of the very fast reaction, no intermediates were 
identified. The proposed multistep mechanism involves initial 
formation of [MoMe { =C(NMe2)Ph) (CO)2(q-C5H5)] which re- 
arranges by methyl to carbene migration to give [Mo{ ql- 
CMe(NMe2)Ph } (CO)~(~-CSH~) ] .  Subsequent (3-elimination/ 
migration processes and nitrogen coordination lead to the final 
product . 

Isotopic labelling studies for the rearrangement of 2 are 
revealing. Treatment of 1 with CD31 results in [2H3]2 with the 
deuterium label contained only within the metal methyl 
group. The rearrangement of C2H3]2 results in some loss of the 
label from the methyl group, but only into the exocyclic position 
of the benzyl ligand of [2H3]3 (Scheme 2). This distribution of 
the label in [2H3]3 is consistent with the reversible (3- 
elimination process invoked in Scheme 1. 

The rearrangement of trans-2 into 3 is monitored conve- 
niently by IR spectroscopy in the carbonyl region as a function 
of time. Under the conditions of the study, the disappearance of 
trans-2 occurs with a first-order rate constant of (7.23 f 0.18) X 
10-4 s-1 at 298 K in thf. The rate constant is invariant over a 
near threefold range of concentration indicating that the methyl 
to carbene migration is intramolecular. For activation para- 
meters, rates determined at four temperatures (298-323 K) lead 
to AH* = 61 f 2 kJ mol-1 and AS* = -101 f 5 J K mol-I. 

Scheme 1 involves a translcis isomerisation prior to an 
irreversible migration step (the migration step is irreversible 
since dissolving either 3 or trans-4 does not yield any detectable 
trans-2.8) The magnitude and sign of this value of AS* are 
inconsistent with the translcis isomerisation step being rate 
determining. The activation parameters therefore would seem to 
relate to the methyl to carbene migration. The greater ordering 

1 6 

\Me1 I 
LiMe ' H -  - ' H  

oc-,w,=c: Meyw<C( 
oc Me Ph OC COPh 

cis-2 

J I trans-2 

w 
3 

cis-4 trans-4 

Scheme 1 

D3C:,w<c:H 
OC COPh 

[*H31 3 
1 : 3  
Scheme 2 

Chem. Commun., 1996 1765 



within the transition state corresponds to the three-centre two- 
electron bond proposed for migrations to carbene. *O The solvent 
does not appear to play a prominent role in the rearrangement as 
similar rates and activation parameters are found in toluene and 
thf, solvents with very different coordinating abilities. 

The corresponding reaction of H+ with 1 in thf at -80 "C 
results in a solution containing [W { q3-CH2Ph} (C0)2- 
(q-CSHS)]. 1 1  Reaction occurs with CBr, immediately after 
protonation but unfortunately the product was not isolable. This 
does, however, suggest that a hydride, probably 
[WH(=CHPh)(CO)2(q-C5H5)] , is formed in that reaction and 
that it undergoes a very facile hydride to carbene migration. The 
migratory aptitude H >> Me is again consistent with the three- 
centre two-electron bond of the transition state where better 
overlap of the less directional 1s orbital of hydrogen affords 
greater stability. 

Finally, we note that reaction of LiMe with [WI(=CHPh)- 
(C0)2(q-CSHS)] 6 in thf at -80 "C results in a solution 
containing only 3 as soon as an IR spectrum could be recorded. 
No evidence was found for the formation of any 2, suggesting 
the organolithium reagent attacks directly at the electrophilic 
carbene centre of 6 and not at the metal centre. 
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Footnotes 
t ~~~~S-[WM~(=CHP~)(CO)~(T~-C~HJ)J 2, red. Found: C, 43.84; H, 3.39%. 
C15HI4O2W requires C, 43.93; H, 3.44%; m/z 410 (M+). IR [vco(thf)] 

1983m, 1912scm-l. lHNMR(Ca6)6  12.17(s, 1H,JWH8.5 Hz,SHPh), 
7.75 (m, 2H, Ph), 7.20 (m, 2H, Ph), 7.08 (m, lH, Ph), 4.99 (s, 5H, CsHs), 
0.50 (s, 3H, Me). 13C NMR (CDPCl2, -50 "C) 6 256.3 (S), 214.2 (CO), 
148.4 (ipso-C, Ph), 132.0 (o- or m-C, Ph), 129.6 @-C, Ph), 128.8 (o- or m-C, 
Ph), 98.1 (CsHs), -16.8 (Me). 
3 trans-4: IR [vco(cyclohexane)J: 1976m and 1899s cm-1. 1H NMR 
(C~DSCD~, -50 "C) 6 -5.7 (s, lH, W-H). 
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