Catalytic asymmetric synthesis of optically active alkenes by palladium-catalysed asymmetric reduction of racernic allylic esters with formic acid

Tamio Hayashi," Motoi Kawatsura, Hiroshi Iwamura, Yousuke Yamaura and Yasuhiro Uozumi

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-01, Japan

Asymmetric reduction of racemic ally1 esters, e.g. methyl 1-vinyl- 1,2,3,4-tetrahydronaphth- 1 -yl carbonate, which contain two different alkyl groups at the a-position, with formic acid in the presence of 1 mol% of palladium catalyst coordinated with (R)-3-diphenylphosphino-3' methoxy-4,4'-biphenanthryl [(R)-MOP-phen] ligand gives optically active terminal alkenes in up to 93% ee.

It has been reported that the palladium-catalysed reduction of allylic carbonates 1 with formic acid¹ in the presence of a palladium catalyst coordinated with axially chiral monodentate phosphine ligand, (R)-2-diphenylphosphino-2'-methoxy-1.1'binaphthyl $[(R)-M\neq O-MOP]$ ² or its biphenanthryl analogue, (R) -MOP-phen,³ gave optically active alkenes 2 in up to 91% ee (Scheme 1).^{4,5,6} The reduction proceeds by way of $Pd^{II}X(\pi$ allyl)(L*) intermediates 3 which undergo epimerization but do not undergo *syn-anti* isomerization, and the stereochemical outcome is determined by the thermodynamic stability of the epimeric π -allylpalladium intermediates.^{3,4,5} The esters of 3,3-disubstituted prop-2-enols hitherto used for the asymmetric reduction are limited to those with a geometrically pure E - or Z -

double bond for the high enantioselectivity becasue opposite enantiomers are produced from the E- and Z-esters. The palladium-catalysed reduction of racemic 1,l -disubstituted prop-2-enyl ester **4,** which is a regioisomeric ester of 1, should proceed through the same π -allylpalladium intermediate 3. If the oxidative addition of ester **4** to palladium(0) takes place with high selectivity in forming either the *syn* or *anti* x-allylpalladium intermediate, the reduction product **2** is expected to have enantiomeric purity, as high as that from the regioisomer (E) -1 or **(Z)-1.** We found that the high enantioselectivity is attained with some racemic tertiary allylic esters **4** where one of the alkyl groups at the 1 position is bulky enough to bring about high *syn* selectivity at the oxidative addition step.

The results obtained for the asymmetric reduction of racemic esters **4** are summarized in Table 1, which also contains data for the reaction of (E) -1 for comparison. The reduction of methyl 1 -vinyl- **1,2,3,4-tetrahydronaphth-** 1 -yl carbonate **4a** with formic acid (2.2 equiv.) in the presence of proton sponge (1.2 equiv.) and 1 *.O* mol% of palladium catalyst, generated *in situ* by mixing

Table 1 Asymmetric reduction of allylic esters **4** or **1** with formic acid catalysed by palladium/MOP-phen^a

Entry	Allyl ester	Conditions			Ee $(\%)$
		T /°C	t/h	Yield $(\%)^b$ of 2	of 2 (Config.)
1	$dl - 4a$	-20	48	87(2a)	93 $c(R)^d$
2	$dl - 4a$	0	24	91(2a)	91 ϵ (R)
3	$dl - 4a$	20	5	87(2a)	84c(R)
4e	$dl-4a$	20	12	89(2a)	78c(R)
5	$dl - 4a'$	-20	96	90(2a)	$92^c(R)$
6	$dl - 4a'$	-20	48	45 $(2a)$	91 ^c (R)
7	(E) -la	0	120	0(2a)	
8	(E) -la	20	12	91(2a)	83c(R)
9	$dl-4b$	0	24	81(2b)	$86c(R)^d$
10	(E) -1b	20	11	88 (2b)	78c(R)
11	$dl-4c$	0	36	96(2c)	$75^{d,g}$
12	dl-4d	20	3	92(2d)	13s(R)
13 ^h	(E) -1d	20	22	96(2d)	85s(R)
14	dl-4e	20	12	>99(2e)	8^{i} (S)
15 ^h	(E) -le	20	17	>99(2e)	$85^{i} (S)$

a The reduction was carried out with 2.2 equiv. of formic acid in THFdioxane **(1** : 1) in the presence of 1.2 equiv. of 1,8-bis(dimethylamino) naphthalene and 1.0 mol% of catalyst prepared *in situ* by mixing $Pd_2(dba)_3$ ·CHCl₃ and MOP-phen (2 equiv. to Pd). ^b Isolated yield by silica gel column chromatography. *c* Determined by GLC analysis with chiral stationary phase column, CP Cyclodex P236M. *d* Specific rotations of **2a** (entry 1), **2b** (entry 9) and **2c** (entry 11) are $[\alpha]_D^2$ ⁰ -84.0, -74.6 and +3.5 **(c** 0.9-1 .O, chloroform), respectively. **e** Reaction with (R)-MeO-MOP. *f* The recovered (48%) ester **4a'** was racemic, which was determined by the GLC analysis (CP Cyclodex P236M) of **l-viny1-1,2,3,4-tetrahydronaphthol. ^g**Determined by HPLC analysis of anilide of carboxylic acid, obtained by the oxidation **(NaI04-KMn04)** of **2c** or **2d,** with Sumichiral OA- 2000 $(hexane-dichloroethane-ethanol = 250:20:1)$. *h* Reported in ref. 4. \hat{i} Determined by HPLC analysis of dianilide of 2-methylpentane-dioic acid, obtained by the oxidation (NaI04-KMn04) of **2e,** with Sumichiral OA-⁴¹⁰⁰**(hexane-dichloroethane-thanol** = 50 : 15 : 1).

 $Pd_2(dba)$ ₃·CHCl₃ and (R)-MOP-phen (Pd/P = 1/2), proceeded at -20 °C in THF-dioxane to give the optically active (R) -1 -vinyl- **1,2,3,4-tetrahydronaphthalene 2a** in *87%* yield { *[ar]~20* - 84.0 *(c* 0.9, chloroform)} (Table 1, entry 1) (Scheme 2). The absolute configuration was assigned by correlation with known $(S)-(-)$ -1,2,3,4-tetrahydronaphthoic $\arctan \frac{q}{q}$ $(\alpha|_{D}^{20} - 56.7)$ **(c** *0.5,* benzene)} and the enantiomeric purity was determined to be *93%* ee by capillary GLC analysis with a chiral stationary phase column, CP Cyclodex *P-236M.* The asymmetric reduction of **d1-4b,** which is a racemic ester derived from 1 -indanone, also proceeded with high enantioselectivity giving the corresponding terminal alkene **(R)-2b8** in *86%* ee (entry *9).*

Interestingly the asymmetric reduction of **dl-4a** is much faster than that of its regioisomeric ester, 3,3-disubstituted prop-2-enyl carbonate (E) -1a. The reduction of (E) -1a did not take place at 0° C or lower (entry 7). At 20 $^{\circ}$ C it gave (R) -2a in 83% ee (entry 8), the stereoselectivity being essentially the same as that for **dl-4a** at 20 "C (entry 3). The lower reactivity of **(E)-la** is ascribed to the two alkyl substituents at the 3 position of *(E)* **la.** The steric hindrance retards the oxidative addition step in the catalytic cycle which takes place in an S_N' manner.^{6,9}

The stereochemical results of the reduction of **dl-4a** and *(E)-* **1a** is illustrated in Scheme 3. The π -allylpalladium intermediate resulting from **(E)-la** should be *syn-5,* which contains the aromatic ring at the *syn* position with respect to the hydrogen at the 2 position of π -allyl. The same stereochemical outcome in the reaction of (E) -la and dl -4a indicates that the π allylpalladium intermediate formed from **dl-4a** is also *syn-5,* and the configuration *R* of the product **2a** indicates that the configuration of the predominant π -allylpalladium intermediate is *syn-(2R)-510* in both cases. In the reaction of racemic 1,l -disubstituted prop-2-enyl ester **dl-4** where one of the substituents on the 1-position is much bigger than the other, the ally1 ester undergoes oxidative addition with the conformation forming a π -allylpalladium intermediate with the bigger alkyl group substituted at the *syn* position. After the epimerization between *syn-(2R)-5* and *syn-(2S)-5* the product **(R)-2a** is formed from the thermodynamically more stable *syn-(2R)-5* (Scheme 3).

The asymmetric reduction of acyclic allylic ester **dl-4c** that contains the sterically bulky1 1-adamantyl group at the l-position also proceeded with high enantioselectivity to give **2c** in

75% ee (entry 11). Much lower enantioselectivity (around 10% ee) was observed in the reaction of sterically less bulky esters **dl-4d** and **dl-4e** (entries 12 and **14).** Comparing the low selectivity in the reaction of **dl-4d** and **dl-4e** with the high selectivity in the reaction of their regioisomers, (E) -1d and (E) **le**, which gave the corresponding alkenes¹¹ of 85% ee⁴ (entries 13 and 15), it follows that the selectivity of the π -allylpalladium intermediates is low with these sterically less bulky 1,l-disubstituted prop-2-enyl esters.

References

- 1 For a review: J. Tsuji and T. Mandai, *Synthesis,* 1996, 1.
- 2 Y. Uozumi and T. Hayashi, J. *Am. Chem. Soc.,* 1991, **113,** 9887; Y. Uozumi, A. Tanahashi, **S.-Y.** Lee and T. Hayashi, J. *Org. Chem.,* 1993,58, 1945.
- 3 T. Hayashi, H. Iwamura, Y. Uozumi, Y. Matsumoto and F. Ozawa, *Synthesis,* 1994, 526.
- 4 T. Hayashi, H. Iwamura, M. Naito, Y. Matsumoto, Y. Uozumi, M. Miki and K. Yanagi, J. *Am. Chem.Soc.,* 1994, 116,775.
- 5 T. Hayashi, H. Iwamura and Y. Uozumi, *Tetrahedron Lett.,* 1994, *35,* 4813.
- 6 For reviews on catalytic asymmetric allylic substitutions: B. M. Trost and D. L. Van Vranken, *Chem. Rev.,* 1996, 96, 395; T. Hayashi, *Catalytic Asymmetric Synthesis,* ed. I. Ojima, VCH, New York, 1993, p. 325.
- 7 L. Westman, *Arkiv. Kemi,* 1958, 12, 161; *Chem. Abstr.,* 1958, 52, 14574.
- 8 The absolute configuration was determined by correlation with known (S)-(-)-l-carboxyindan; **A.** Fredga, *Chem. Ber.,* 1956,89, 322.
- 9 T. Hayashi, A. Yamamoto and Y. Ito, *Tetrahedron Lett.,* 1987, 28, 4837.
- 10 Hydride transfer takes place from the same side as palladium: See ref. 1 and M. Oshima, I. Shimizu, **A.** Yamamoto and F. Ozawa, *Organometallics,* 1991, **10,** 1221.
- 11 D. Arigoni and 0. Jeger, *Helv. Chim. Acta,* 1954, **37,** 881; S. **E.** Denmark and L. K. Marble, J. *Org. Chem.,* 1990,55, 1984.

Received, *13th May 1996; Corn. 6103344J*