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Asymmetric reduction of racemic ally1 esters, e.g. methyl 
1-vinyl- 1,2,3,4-tetrahydronaphth- 1 -yl carbonate, which 
contain two different alkyl groups at the a-position, with 
formic acid in the presence of 1 mol% of palladium 
catalyst coordinated with (R)-3-diphenylphosphino-3'- 
methoxy-4,4'-biphenanthryl [(R)-MOP-phen] ligand gives 
optically active terminal alkenes in up to 93% ee. 

It has been reported that the palladium-catalysed reduction of 
allylic carbonates 1 with formic acid1 in the presence of a 
palladium catalyst coordinated with axially chiral monodentate 
phosphine ligand, (R)-2-diphenylphosphino-2'-methoxy- 1 , 1'- 
binaphthyl [ (R)-MeO-MOP] ,2 or its biphenanthryl analogue, 
(R)-MOP-phen,3 gave optically active alkenes 2 in up to 9 1 % ee 
(Scheme l).4-5,6 The reduction proceeds by way of PdIIX(x- 
allyl)(L*) intermediates 3 which undergo epimerization but do 
not undergo syn-anti isomerization, and the stereochemical 
outcome is determined by the thermodynamic stability of the 
epimeric x-allylpalladium intermediates.3.4.5 The esters of 
3,3-disubstituted prop-2-enols hitherto used for the asymmetric 
reduction are limited to those with a geometrically pure E- or Z- 
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double bond for the high enantioselectivity becasue opposite 
enantiomers are produced from the E- and Z-esters. The 
palladium-catalysed reduction of racemic 1,l -disubstituted 
prop-2-enyl ester 4, which is a regioisomeric ester of 1, should 
proceed through the same x-allylpalladium intermediate 3. If 
the oxidative addition of ester 4 to palladium(0) takes place with 
high selectivity in forming either the syn or anti x-allylpalla- 
dium intermediate, the reduction product 2 is expected to have 
enantiomeric purity, as high as that from the regioisomer (E)-1 
or (Z)-1. We found that the high enantioselectivity is attained 
with some racemic tertiary allylic esters 4 where one of the alkyl 
groups at the 1 position is bulky enough to bring about high syn 
selectivity at the oxidative addition step. 

The results obtained for the asymmetric reduction of racemic 
esters 4 are summarized in Table 1, which also contains data for 
the reaction of (E)-1 for comparison. The reduction of methyl 
1 -vinyl- 1,2,3,4-tetrahydronaphth- 1 -yl carbonate 4a with formic 
acid (2.2 equiv.) in the presence of proton sponge (1.2 equiv.) 
and 1 .O mol% of palladium catalyst, generated in situ by mixing 

Table 1 Asymmetric reduction of allylic esters 4 or 1 with formic acid 
catalysed by palladium/MOP-phena 

Conditions Ee (%) 
Ally1 Yield (%)h of 2 

Entry ester TfOC t/h of 2 (Config.) 

1 
2 
3 
4e 
5 
6 
7 
8 
9 

10 
11 
12 
1 3h 
14 
15h 

dl-4a 
dl-4a 
dl-4a 
dl-4a 

dl-4a' 
(E)-la 
(@-la 
dl-4b 
(E)-lb 
d l -4~  
dl-4d 
(E)-ld 
d1-k 

dl-4a' 

(E)-le 

-20 48 87 (2a) 
0 24 91 (2a) 

20 5 87 (2a) 
20 12 89 (2a) 

-20 96 90(2a) 
-20 48 45 (2a)f 

0 120 0 (2a) 
20 12 91 (2a) 
0 24 81 (2b) 

20 11 88 (2b) 
0 36 96 (2c) 

20 3 92 (2d) 
20 22 96 (2d) 
20 12 >99 (2e) 
20 17 >99 (2e) 

9 3 ~  (R)d 
9 1' (R) 
8 4 ~  (R) 
78C (R) 
92C (R) 
9 1 ~  (R) 

83C (R) 
8 6 ~  (R)d 
7 8 ~  (R) 
75d.g 
138 (R) 
85g (R) 

8; (S) 
85' ( S )  

- 

a The reduction was carried out with 2.2 equiv. of formic acid in THF- 
dioxane (1 : 1) in the presence of 1.2 equiv. of 1,8-bis(dimethylamino)- 
naphthalene and 1.0 mol% of catalyst prepared in situ by mixing 
Pd2(dba)sCHCls and MOP-phen (2 equiv. to Pd). Isolated yield by silica 
gel column chromatography. c Determined by GLC analysis with chiral 
stationary phase column, CP Cyclodex P236M. d Specific rotations of 2a 
(entry l), 2b (entry 9) and 2c (entry 11) are [a ]D20 -84.0, -74.6 and +3.5 
(c 0.9-1 .O, chloroform), respectively. e Reaction with (R)-MeO-MOP. f The 
recovered (48%) ester 4a' was racemic, which was determined by the GLC 
analysis (CP Cyclodex P236M) of l-viny1-1,2,3,4-tetrahydronaphthol. 
g Determined by HPLC analysis of anilide of carboxylic acid, obtained by 
the oxidation (NaI04-KMn04) of 2c or 2d, with Sumichiral OA- 2000 
(hexane-dichloroethaneethanol = 250 : 20 : 1). h Reported in ref. 4. 
i Determined by HPLC analysis of dianilide of 2-methylpentane- dioic acid, 
obtained by the oxidation (NaI04-KMn04) of 2e, with Sumichiral OA- 
4100 (hexane-dichloroethane-thanol = 50 : 15 : 1). 

Chem. Commun., 1996 1767 



(1 mol%) 
Pdl(R)-MOP-phen 

proton sponge 

.D 

HCOiH 

dC4a n = 2, X = OC02Me 
dC4a' n = 2, X = OCOBu' 
dC4b n = 1, X = OCOBu' 

w°C02Me 
9' >n 

(€)-la n = 2 
( 0 - l b  n =  1 

2 a n = 2  
2bn=1  

R-OCO2Me 
I -  

Me 
(€)-ld R = cyclohexyl 
(€)-le R = CH2CH&H=CMe2 

(1 mol%) 
Pd/(R)-MOP-phen 

P R* - 

HC.02H Me/ "H / %  
proton sponge Me OC02Me 

dC4c R = l-adamantyl 2c-e 
d M  R = cyclohexyl 
dC4e R = CH2CH2CH=CMe2 

Scheme 2 

Pd2(dba)3CHC13 and (R)-MOP-phen (PdP = 1/2), proceeded 
at -20 "C in THF-dioxane to give the optically active (R)- 
1 -vinyl- 1,2,3,4-tetrahydronaphthalene 2a in 87% yield { [ a r ] ~ 2 0  
- 84.0 (c  0.9, chloroform)} (Table 1, entry 1) (Scheme 2). The 
absolute configuration was assigned by correlation with known 
(S)-( -)- 1,2,3,4-tetrahydronaphthoic acid7 { (aID2O - 56.7 
(c 0.5, benzene)} and the enantiomeric purity was determined to 
be 93% ee by capillary GLC analysis with a chiral stationary 
phase column, CP Cyclodex P-236M. The asymmetric reduc- 
tion of d1-4b, which is a racemic ester derived from 1 -indanone, 
also proceeded with high enantioselectivity giving the corre- 
sponding terminal alkene (R)-2b8 in 86% ee (entry 9). 

Interestingly the asymmetric reduction of dl-4a is much faster 
than that of its regioisomeric ester, 3,3-disubstituted prop- 
2-enyl carbonate @)-la. The reduction of (E)-la did not take 
place at 0 "C or lower (entry 7). At 20 "C it gave (R)-2a in 83% 
ee (entry 8), the stereoselectivity being essentially the same as 
that for dl-4a at 20 "C (entry 3). The lower reactivity of (E)-la 
is ascribed to the two alkyl substituents at the 3 position of (E)- 
la.  The steric hindrance retards the oxidative addition step in 
the catalytic cycle which takes place in an SN' manner.6.9 

The stereochemical results of the reduction of dl-4a and (E)- 
l a  is illustrated in Scheme 3. The n-allylpalladium intermediate 
resulting from (E)-la should be syn-5, which contains the 
aromatic ring at the syn position with respect to the hydrogen at 
the 2 position of n-allyl. The same stereochemical outcome in 
the reaction of @)-la and dl-4a indicates that the n- 
allylpalladium intermediate formed from dl-4a is also syn-5, 
and the configuration R of the product 2a indicates that the 
configuration of the predominant n-allylpalladium intermediate 
is syn-(2R)-510 in both cases. In the reaction of racemic 
1,l -disubstituted prop-2-enyl ester dl-4 where one of the 
substituents on the 1-position is much bigger than the other, the 
ally1 ester undergoes oxidative addition with the conformation 
forming a n-allylpalladium intermediate with the bigger alkyl 
group substituted at the syn position. After the epimerization 
between syn-(2R)-5 and syn-(2S)-5 the product (R)-2a is formed 
from the thermodynamically more stable syn-(2R)-5 
(Scheme 3). 

The asymmetric reduction of acyclic allylic ester dl-4c that 
contains the sterically bulky1 1-adamantyl group at the l-posi- 
tion also proceeded with high enantioselectivity to give 2c in 

75% ee (entry 11). Much lower enantioselectivity (around 10% 
ee) was observed in the reaction of sterically less bulky esters 
dl-4d and dl-4e (entries 12 and 14). Comparing the low 
selectivity in the reaction of dl-4d and dl-4e with the high 
selectivity in the reaction of their regioisomers, (E)-ld and (Q- 
le, which gave the corresponding alkenes" of 85% ee4 (entries 
13 and 15), it follows that the selectivity of the x-allylpalladium 
intermediates is low with these sterically less bulky 1,l-di- 
substituted prop-2-enyl esters. 
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