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Formation of chimeric duplexes is investigated between 
DNA bearing exclusively 2’,5’-phosphodiester linkages and 
DNA or RNA bearing 3’,5’-linkages; 2’-isomeric-DNA 
yields a hybrid duplex with RNA of the same stability as 
the corresponding all 3’,5’-linked DNA-RNA duplex. 

DNA or RNA bearing exclusively 2’,5’-phosphodiester bonds 
associates with itself through formation of purine-pyrimidine 
Watson-Crick pairs.’-3 This finding raises the possibility that 
2’,5’-linked RNA, in conjunction with 3’,5’-linked RNA, could 
have made a positive contribution to molecular evolution on the 
primitive Earth. Indeed, 2’,5’-linked RNA has been shown 
recently to oligomerize activated mononucleotides in the 
presence of divalent metal  ion^.^,^ 2’,5’-Linked RNA is also the 
product of mononucleotide oligomerization with natural, 3’3’- 
linked nucleotide templates, depending on  condition^.^,^ As part 
of a continuing effort to explore molecular recognition of 
isomeric nucleic acids,1,839 we report here a comparison of 
thermodynamic stabilities for chimeric and homogeneous 
duplexes from all possible pairings of two 2’-isomeric-DNA 
strands and the corresponding strands of 3’,5’-linked DNA or 
RNA. 

Synthesis and characterization of isomeric DNA strands 1 
and 2 used in this study have been described previously 
(Table 1).lb To assess whether 2’-isomeric-DNA would asso- 
ciate with complementary strands of DNA or RNA, temperature 
vs. UV absorbance profiles were obtained. Cooperative transi- 
tions result from a combination of 2’-isomeric-DNA and 
complementary RNA strands [Fig. l(a) and (b)] ,  consistent with 
recognition by means of Watson-Crick base-pairing. Also 
given in Fig. l (a )  and (b) are control experiments showing 
thermal profiles of component single strands for each chimeric 

Table 1 All values determined with samples containing 1 mol dm-3 NaCl, 
10 mol dm-3 sodium phosphate, 0.1 mmol dm-3 EDTA at pH 7, and a 
5 pmol dm-3 total concentration of oligonucleotides (except in the case of 
single-stranded oligomers where a concentration of 2.5 pmol dm-3 was 
employed) 
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-A037/ 
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5’-dCCGGCCGCGCGC-2‘ 1 
2’-dGGCCGGCGCGCG-5’2 
5’-dCCGGCCGCGCGC-3’ 3 
3’-dGGCCGGCGCGCG-5’ 4 
5’-rCCGGCCGCGCGC-3’ 5 
3’-rGGCCGGCGCGCG-5’ 6 
5’-dCCGGCCGCGCGC-2’ 1 
3’-rGGCCGGCGCGCG-5’ 6 
5’-rCCGGCCGCGCGC-3’ 5 
2’-dGGCCGGCGCGCG-5’ 2 
5’-dCCGGCCGCGCGC-2’ 1 
3’-dGGCCGGCGCGCG-5’ 4 
5’-dCCGGCCGCGCGC-3’ 3 
2’-dGGCCGGCGCGCG-5‘ 2 
5’-dCCGGCCGCGCGC-3’ 3 
3’-rGGCCGGCGCGCG-5’ 6 
5’-rCCGGCCGCGCGC-3’ 5 
3’-dGGCCGGCGCGCG-5’4 
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a Values taken from ref. Ib. 1 cal = 4.184 J. 

duplex. Whereas thermal profiles for 2’-isomeric-DNA strands 
are virtually featureless, profiles for the RNA single strands 
indicate structure. However, this structure is clearly absent from 
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Fig. 1 UV absorbance profiles (280 nm) for: (a), 1 and 6 (0, mixture of 
complementary strands), 1 (0, single-strand) and 6 (0, single-strand); 
(b), 2 and 5 (o), 2 (0) and 5 (0); (c), 5 and 6 (o), 4 and 5 (U), and 3 and 
6 (0) 
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the chimeric duplex profiles, since the transitions derived from 
RNA single-strands alone occur at a temperature discernibly 
lower than the duplex transitions. Variation of the concentration 
of RNA single strands showed a clear effect on transition 
temperature, demonstrating that their structures derive from 
equilibria other than unimolecular. Parallel experiments with 
complementary DNA gave no discernible transitions (Table 1, 
entries 6 and 7), consistent with no strand association in this 
case. 

Free energies of association were determined for 2’-isomeric- 
DNA-RNA duplexes along with other duplexes, and are 
summarized in Table 1. Values for AGO were derived by non- 
linear regression of temperature vs. UV absorbance profiles of 
the duplexes.1° Comparison of free energy values in Table 1 
shows that 2’-isomeric-DNA-RNA duplexes are approximately 
isoenergetic with DNA-RNA duplexes (entries 4 and 5 vs. 8 and 
9). In addition, the duplex of lowest stability derives from 
strands of purely 2’-isomeric-DNA (entry l), whereas the 
duplex composed of RNA strands is most stable (entry 3). 

To investigate the molecular basis for the observed stabilities, 
circular-dichroism spectra of the duplexes were determined, and 
are presented in Fig. 2. 2’-Isomeric-DNA-RNA chimera adopt 
an A-form helix similar to the RNA-RNA duplex [Fig. 2(a) and 
(b)]. To complete the structural picture of 2’-isomeric-DNA, the 
CD spectrum of the fully isomeric duplex was also determined 
[Fig. 2(b)], and found to fall into the same A-form structural 
category. 

The remarkable two-fold greater stability of the 2’-isomeric- 
DNA-RNA duplexes 1/6 and 5/2 relative to the parent 2’- 
isomeric-DNA duplex 1/2 (Table 1, entries 4, 5 and 1) is 
consistent with the adoption of A-form structures by these two 
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Fig. 2 CD spectra for mixtures of complementary strands (0 and the 
summation of separate spectra for single-strands (+). All spectra were 
recorded at 10 “C. The CD spectra for 2/5 and 2+5 (not shown) were found 
to be essentially identical to those of 1/6 and 1+6 shown in Fig. l (a) .  

systems. Preorganization or increased base stacking on the part 
of the RNA single-strands 5 and 6, or both, could lead to the 
observed stability differences. The absence of 2’-isomeric-DNA 
complexation with natural DNA may be understood based on 
the reluctance of the latter to assume an A-type conformation, 
and the inability of the isomeric structure to override this 
preference. 

Several nucleic acids complexes bearing 2’-isomeric strands 
have been characterized in the past. Chimeric triple helical 
complexes formed from strands of 2’,5‘- and 3’,5’-linked RNA 
have been reported,l l-13 and extended to include 2’,5’-DNA.14 
In one case a chimeric duplex between 2’,5’- and 3’,5’-linked 
RNA strands was observed,l3 but a comparison of its stability 
with a purely 3’,5’-linked RNA duplex through T, measure- 
ments was complicated by single-strand self-association 
phenomena as noted by the authors. 

Chimeric duplexes derived from purely 2’,5’- and 3’,5’-linked 
strands of nucleic acids can rival in stability those of their 
homogenous 3’,5’-linked counterparts as shown in the present 
work. Our data also suggest that a 2’,5’-linked oligomer would 
prefer template-directed formation of a 3’,5’-linked product 
over a 2’-isomeric one, based on primer stabilities alone. A 
tendency toward formation of 3’-linkages from 2’-linkage 
precursors would have merged the evolutionary fate of 2’- 
isomeric nucleic acids with that of modern nucleic acids. 
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