Synthesis of ent-Herbasolide
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ent-Herbasolide is synthesised by elaboration of
(+)-10-camphorsulfonyl chloride which involves
homologation at C-10, cleavage of the C-2/C-3 bond,
oxidation at C-5 and chain extension at C-3 of the
camphor skeleton.

The structure of (+)-herbasolide 1,! a norsesquiterpene lactone
of the marine sponge Dysidea herbacea which grows in the
waters surrounding Papua-New Guinea has been determined by
X-ray diffraction. Biosynthetically this compound is an oxida-
tive catabolite of (—)-herbadysidolide 2 which must be also
related to spirodysin 3, the progenitor of (+)-furodysin 42 and
(+)-furodysinin 5.2 Furodysin and furodysinin are most likely
derived by elimination of acetic acid from spirodysin, involving
a Wagner-Meerwein rearrangement to expand the cyclopentane
ring. We have recently devised a concise synthesis of
(—)-furodysin? and (—)-furodysinin* from (+)-limonene. We
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Scheme 1 Reagents and conditions: i, 9-BBN, THF, HO,, NaOH; ii, SeO,,
HOAC, Ac,0, heat; iii, 30% H,0,, NaOH; iv, BHs, THF; v, BzCl, DMAP,
CH,Cly; vi, 500 °C; vii, SeO,, ButO,H, CH,Cl,; viii, MnO,, CH,Cl,; ix,
CH,=CHCH,SiMe;, TiCls, CH,Cl,; x, PdCl,, CuCl, O,, DMF, H,O

also pursued a route towards herbasolide starting from the
commercially available (+)-10-camphorsulfonyl chloride. Here
we present our results.

Reaction of (+)-10-camphorsulfonyl chloride with diazo-
methane followed by treatment with triethylamine provided the
vinyl derivative 6 via a Ramberg-Bicklund reaction.5 Hydro-
boration of 6 with 9-BBN led to 10-hydroxymethylcamphor 7
(70% yield) which was subjected to SeO, oxidation in Ac,0~
HOAc to furnish the camphorquinone derivative 8 (mp
84-86 °C, 94% yield) in which the primary alcohol had also
been acetylated. Treatment of the «-diketone with alkaline
hydrogen peroxide gave a cyclic anhydride which underwent
lactonization involving the primary alcohol being released in
situ. The lactonic acid 9 (mp 101-103 °C, 90% yield) contains
the bicyclic framework of herbasolide but lacks the side chain
and two ketone groups.

For the elaboration of the missing structural elements the acid
was first reduced by borane-THF complex to give the alcohol
10 (mp 88-90 °C, 86% yield). The alcohol was transformed into
the exocyclic methylene derivative in two steps via benzoyla-
tion (BzCl, DMAP —11) (mp 86-87°C, 92.5% yield) and
pyrolysis (— 12, mp 54-56 °C, 56% yield). Introduction of an
allylic hydroxy group to give 13 (mp 116.5-118.5 °C, 79% for
the major isomer; a combined yield of a 11:1 mixture was
obtained in 85.5% yield) was performed by oxidation with
Se0,-Bu'O,H and the product was further oxidized with
manganese dioxide to the conjugated ketone 14 (mp 83-85 °C,
82.5% yield). Whilst Michael addition to the enone using
acetone enolate equivalents was not too successful, the final
conversion of 14 to herbasolide {9,9-dimethyl-8-(3-oxobutyl)-
2-oxaspiro{4.4]nonane-1,7-dione} (mp 97-98 °C, lit,
97-98 °C) was achieved by the two-step process of Sakurai—
Hosomi reaction® with allyltrimethylsilane in the presence of
TiCly (— 15, 70% yield) and Wacker oxidation (O,, PdCl,,
CuCl, DMF-H,0; 77% yield). The essentially neutral condi-
tions of the oxidation preserved the product by preventing it
from undergoing aldol cyclization. The generation of herbaso-
lide in good yield suggests the Sakurai-Hosomi reaction was
terminated by C-protonation from the side of the lactone
carbonyl.

Using the more readily available (+)-10-camphorsulfonyl
chloride in this synthesis resulted in ent-herbasolide. Thus the
absolute configuration of (+)-herbasolide, indicated by 1 as
arbitrarily assigned, is indeed correct. In view of the fact that
(—)-furodysin was elaborated by a Fijian Dysidea sp.,” we
strongly suspect that the (—)-isomer? synthesized by us will be
found in this other source.
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Footnote

1 Selected spectroscopic data for ent-1. The mp and all spectral data of
synthetic ent-1 are consistent with the assigned structure as well as the data
reported in the literature [IR v/cm—! 1757, 1740 and 1714. 8y (300 MHz,
CDCl;) 0.81 (3H,s),1.16 3 H, s), 2.13 (3 H, 5), 4.22 (1 H, m) and 4.30 (1
H, m). 8¢ (75 MHz, CDCl;) 18.29 (1), 19.63 (q), 21.11 (q), 30.01 (q), 30.82
(1), 42.18 (1), 44.14 (s), 44.93 (1), 50.63 (s), 55.89 (d), 65.36 (), 179.39 (s),
208.01 (s) and 215.19 (s). M+ 252.1359] except [a]p —5.86, [0¢}a36 —134.1
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(c 0.1 CHCls). The latter value is larger than the reported +95 which might
indicate an optical inhomogeneity of the natural product.
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