Jan Petersen, Enno Lork and Rüdiger Mews*

Institut für Anorganische und Physikalische Chemie der Universität Bremen, Leobener Straße NW2, 28334 Bremen, Germany

The relatively thermally stable adduct $Cl_3AsO\cdot AsF_5 1$ is prepared in high yield from $AsCl_4 + AsF_6^-$ and $Me_3SiOSiMe_3$ in liquid SO₂ at -40 °C, and originally surprisingly isolated from the reaction of PrCl₃ and AgAsF₆ in liquid SO₂; the X-ray crystal structure of 1 is compared with that of Cl₃PO·AsF₅.

Inorganic arsenic(v)–chloro derivatives are rare, the only stable compound reported is $AsCl_4+AsF_6^{-.1-3} AsCl_5$, prepared photochemically from $AsCl_3$ and Cl_2 at -105 °C, decomposes rapidly above -50 °C.⁴ The synthesis of $AsOCl_3$ by hydrolysis of the pentachloride is not possible;⁵ its formation in a microwave discharge and isolation in an argon matrix⁶ and its preparation from $AsCl_3$ and O_3 at -78 °C in $CFCl_3-CH_2Cl_2$ solution on a preparative scale^{5.7} has been reported. The compound readily decomposes at 0 °C with formation of $AsCl_3$, Cl_2 and $As_2O_3Cl_4$.^{5.7}

The adduct $Cl_3AsO \cdot AsF_5 1$ is formed in 85% yield as a stable, colourless solid, mp 138 °C (decomp.) from the reaction of $AsCl_4 + AsF_6^-$ and $Me_3SiOSiMe_3$ in liquid SO_2 [Scheme 1, eqn. (1)].†

The primary step in this reaction will be a nucleophilic attack of the siloxane at the highly electrophilic cationic centre,

Fig. 1 Structure of 1 with 50% thermal ellipsoids; bond distances (pm) and bond angles (°): As(1)–O(2) 165.8(4), As(2)–O(2) 184.9(4), As(1)–Cl(1) 205.3(2), As(1)–Cl(2) 205.5(2), As(1)–Cl(3) 204.6(2), As(2)–F(1) 170.4(3), As(2)–F(3) 169.5(4), As(2)–F(4) 169.5(4), As(2)–F(5) 168.3(5), As(2)–F(6) 169.8(4), As(1)–O(2)–As(2) 129.1(2), O(2)–As(1)–Cl(1) 105.4(2), O(2)–As(4)–Cl(2) 114.3(2), O(2)–As(1)–Cl(3) 113.2(2), Cl–As(1)–Cl 107.7(1)–108.9(1), O(2)–As(2)– F_{cis} 85.4(2)–90.3(2), O(2)–As(2)–F(4) 177.1(2), F(4)–As–F91.5(3)–92.5(2)

followed by elimination of Me₃SiCl and Me₃SiF (from AsF_6^{-}). The exact reaction pathway is not known.

We isolated 1 for the first time unexpectedly from the reaction of $PrCl_3$ and $AgAsF_6$ in liquid SO_2 [Scheme 1, eqn. (2)].[†] In the primary reaction an insoluble residue is also formed, which could not be characterised. When this residue was treated in a second step with excess AsF_5 , the praseodymium complex 2 was crystallised from the resulting solution.⁸ From the YbCl₃-AgAsF₆-SO₂ system 1 and [Yb-(SO₂)₃][AsF₆]₃⁸ were characterised by IR spectroscopy. AlCl₃ reacts with AgAsF₆ in liquid SO₂ in a very slow reaction, $AsCl_4+AsF_6^-$ [Scheme 1, eqn. (3)] was detected also by IR spectroscopy.

As the first step in these reactions chloride abstraction from MCl_3 by Ag^+ was expected, followed by occupation of the empty coordination site by the solvent SO_2 . Due to the high Lewis acidities of $LnCl_3$ and $AlCl_3$ or the expected cationic intermediates, AsF_6^- will interact with the metal centres, followed by F/Cl exchange at the arsenic. The formation of OAsCl₃ is explained from solvolysis with SO₂. This solvolysis seems to occur specifically in the coordination sphere of some lanthanide metals.

1 was characterised by elemental analysis and IR spectroscopy [899s ($v_{As=O}$), 772vs, 699s, 647m ($v_{As-F, As-O}$), 508(sh), 489m cm⁻¹ (v_{AsCl})]. The structure of the adduct is shown in Fig. 1.‡

For comparison, the structure of the related adduct $Cl_3PO \cdot AsF_5$ was also determined [average bond distances (pm) and selected bond angles (°): P-Cl 193.5(3)-194.2(3), P-O 150.0(6), As-O 189.0(6); O-P-Cl 108.2(3)-112.7(3), O-As- F_{cis} 85.5(3)-88.8(3), O-As- F_{trans} 177.9(3)]. Since the O-AsF₅ distance in 1 [184.9(4) pm] is shorter than that in the phosphorus analogue it might be assumed that Cl_3AsO is a better donor than $Cl_3PO.^9$ The As-Cl bond lengths (average 205.1 pm) in 1 are similar to those in AsCl₄+AsF₆⁻ (205.5 pm)¹⁰ and suggest a zwitterion type charge distribution Cl_3As^+ -O-As- F_5 , which helps to explain the unexpected thermal stability of 1.

Support of the FNK (University of Bremen) and the Fonds der Chemischen Industrie is gratefully acknowledged.

Footnotes

† Preparation of 1: method A; in a glass vessel equipped with Teflon valves a slight excess of Me₃SiOSiMe₃ (1.05 g, 6.5 mmol) was condensed onto AsCl₄+AsF₆⁻ (2.36 g, 5.8 mmol) in SO₂ (15 ml) under vacuum at -196 °C. The reaction mixture was warmed to -70 °C, and the temperature then slowly raised to -40 °C. Reaction began at -50 °C, when formation of a yellow gas (Cl₂) was observed. After stirring for an additional hour at -30 °C, all volatiles were removed *in vacuo* at room temp. The solid residue was recrystallised from SO₂ to give 1 (1.8 g, 4.9 mmol, 85% yield).

Method B; in a Schlenk vessel, equipped with Teflon valves and a sintered glass frit, stoichiometric amounts of PrCl₃ (0.84 g, 3.4 mmol) and AgAsF₆ (2.74 g, 10.2 mmol) were stirred in SO₂ (15 ml) for three days at room temp. in the dark. The insoluble residue was removed by filtration and washed several times as described.¹¹ After removal of the volatiles, 1 was isolated (0.25 g, 0.7 mmol, 20% yield). Suitable single crystals for the X-ray structure determination were obtained by recrystallisation from SO₂.

 $\ddagger Crystal data:$ for F₅AsOAsCl₃: monoclinic, space group P2₁/c, a = 599.1(2), b = 1858.9(4), c = 774.7(2) pm, β = 107.69(2)°, U = 0.8220(4) nm³, Z = 4, D_c = 2.967 g cm⁻³, μ = 9.131 mm⁻¹,

F(000) = 680, crystal dimensions $0.6 \times 0.5 \times 0.2$ mm. 7500 reflections collected with 2.97 < θ < 27.5°, 1882 unique ($R_{int} = 0.0849$) used in the structural analysis. The data set was collected on a Siemens P4 diffractometer using Mo-K α radiation ($\lambda = 71.073$ pm) at 173 K. The structure was solved by direct methods. All non-H atoms were refined anisotropically.¹² An absorption correction was applied using the program DIFABS.13 The refinement (100 parameters) converged with wR2 = 0.0739 (R1 = 0.0378) and final difference electron density maximum, minimum of 769, -1164 e nm^{-3} .

For F₅AsOPCl₃: monoclinic, space group $P2_1/n$, a = 598.70(10), b = 1837.3(4), c = 763.7(2) pm, $\beta = 107.16(3)^\circ$, U = 0.8027(3) nm³, Z = 4, $D_c = 2.675 \text{ g cm}^{-3}, \mu = 5.459 \text{ mm}^{-1}, F(000) = 608$, crystal dimensions $0.7 \times 0.4 \times 0.4$ mm. 2551 reflections collected with 3.00 < θ < 27.49°, 1821 unique ($R_{int} = 0.0970$) used in the structural analysis. The data set was collected on a Siemens P4 diffractometer using Mo-K α radiation $(\lambda = 71.073 \text{ pm})$ at 173 K. The structure was solved by direct methods. All non-H atoms were refined anisotropically.12 An absorption correction was applied using DIFABS.13 The refinement (101 parameters) converged with wR2 = 0.1771 (R1 = 0.0775) and final difference electron density maximum, minimum 2793, -1316 e nm⁻³. The high remaining electron density is located near F(2) and F(3) indicating a possible disordering of these fluorine atoms. Further treatment of these peaks was not satisfactory. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/162

 $Cl_3PO \cdot AsF_5$ was obtained in quantitative yield from the reaction of Cl_3PO and AsF₅ in liquid SO₂. The colourless solid, [mp 153 °C (decomp.)] is readily sublimed in vacuo. IR (Nujol): 1307w, 1144vs (vPO), 733vs, 707vs (v_{AsF}) , 656vs $(v_{asympCl_3})$, 587w, 547vw, 456w cm⁻¹.

References

- 1 L. Kolditz, Z. Anorg. Allg. Chem., 1955, 280, 313.
- J. Weidlein and K. Dehnicke, Z. Anorg. Allg. Chem., 1965, 337, 113.
 H. Preiss, Z. Anorg. Allg. Chem., 1971, 380, 45.
- 4 K. Seppelt, Angew. Chem., 1976, 88, 410; Angew. Chem., Int. Ed. Engl., 1976, 15, 377.
- 5 K. Seppelt, Angew. Chem., 1976, 88, 806; Angew. Chem., Int. Ed. Engl., 1976, 15, 766.
- 6 F. S. Benfield, A. J. Downs, G. P. Gaskill and S. E. Staniforth, J. Chem. Soc., Chem. Commun., 1976, 856.
- 7 K. Seppelt, D. Lentz and H. H. Eysel, Z. Anorg. Allg. Chem., 1978, 439,
- 8 J. Petersen, E. Lork and R. Mews, unpublished work.
- 9 The structure and spectroscopic properties of OPCl₃ adducts are discussed in detail in relation to Cl₃PO·ReCl₅. P. Klingelhöfer, U. Müller, A. G. Hauck and K. Dehnicke, Z. Naturforsch., Teil B, 1984, 39, 135.
- 10 R. Minkwitz, J. Nowicki and H. Borrmann, Z. Anorg. Allg. Chem., 1991, 596. 93.
- 11 G. Hartmann, R. Hoppenheit, R. Mews, R. Froböse and G. M. Sheldrick, Z. Naturforsch., Teil B, 1982, 37, 1234.
- 12 Structure solution and graphics, Siemens SHELXTL-Plus: G. M. Sheldrick, Release 4.0 for Siemens R3 Crystallographic Research Systems, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1989; structure refinement: SHELXL-93, G. M. Sheldrick, University of Göttingen.
- 13 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

Received, 7th May 1996; Com. 6/03141B