Selective fluorination of β -ketoesters using iodotoluene difluoride and a HF-amine complex

Shoji Hara,* Manabu Sekiguchi, Akihiro Ohmori, Tsuyoshi Fukuhara and Norihiko Yoneda*

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan

β -Ketoesters are selectively fluorinated at the α -position by iodotoluene difluoride and a HF-pyridine complex.

This is the first paper in a series investigating the synthetic utility of iodotoluene difluoride. Although the iodotoluene difluoride in this paper was prepared *via* Carpenter's original HgO method, a recent paper¹ describes a potentially more practical, regenerative method.

2-Fluoro-1,3-dicarbonyl compounds have been synthesized by treating the parent dicarbonyls or their enolates with elemental fluorine² or one of the many electrophilic fluorinating agents such as FClO₃,³ XeF₂,⁴ AcOF,⁵ R_FOF⁶ and CsSO₄F.⁷ However, most of these agents are highly reactive, unstable and even explosive, and require special equipment and experience for safe handling. Recently, *N*-fluoro compounds⁸ have been developed as stable and effective fluorinating reagents of carbonyl compounds, but elemental fluorine is necessary for their preparation. On the other hand, iodoarene difluorides **3** are an attractive fluorinating reagent as they are synthetically accessible without the use of fluorine.⁹ Although iodoarene

 Table 1 Fluorination of butyl acetoacetate with iodoarene difluorides and HF-amine complexes

Iodoarene difluoride 3	x	HFAmine	Reaction time/h	Yield of 2b (%) ^a	
a	н	none	72	0	
a	Н	3HF-Et ₃ N	41	60	
а	н	6HF-Et ₃ N	8	57	
a	н	3HF-pyridine	25	25	
a	н	6HF-pyridine	5	62	
a	н	9HF-pyridine	3	62	
b	Me	9HFpyridine	3	79	
c	COOEt	9HF-pyridine	3	30	

^a Isolated yield based on butyl acetoacetate

Table 2 Fluorination of β -ketoesters with **3b**

β-ketoester 1	R۱	R ²	R ³	Reaction time/h	Yield of 2 (%) ^a
a	Me	Н	Et	2	(80)
b	Me	н	Bu	3	79
с	Pr	н	Et	3	72
d	Ph	Н	Et	3	73
e	Me	Me	Bu	3	62
f	Ph	Ph	Et	5	(50)

^a Isolated yields based on 1. GLPC Yields in parentheses.

difluorides 3 have been successfully used for the fluorination of alkenes¹⁰ and sulfur compounds,¹¹ they have not been applied for the direct fluorination of carbonyl compounds. We report here that the β -ketoesters 1 reacted with iodoarene difluorides 3 in the presence of a HF-amine complex to give α -fluorinated products 2 (Scheme 1).

The fluorination of butyl acetoacetate 1b was carried out using iodoarene difluorides 3 and a variety of amine-HF complexes as shown in Table 1. Iodobenzene difluoride 3a alone showed no reactivity towards 1b, but in the presence of an amine-HF complex such as nHF-pyridine and nHF-Et₃N, the fluorination of 1b took place selectively at the α -position to give the corresponding fluorinated products 2b.⁺,⁺ Among the amine-HF complexes used, the 9HF-pyridine complex (Olah's reagent) gave the best results. As for the iodoarene difluorides 3, p-iodotoluene difluoride 3b was found to be superior to 3a and the ethyl p-iodobenzoate derivative 3c. The reaction of the β -ketoesters **1a**-**d** having no substituent at the α -position with 1 equiv. of the 9HF-pyridine complex and 1.3 equiv. of 3b in dichloromethane proceeded at room temperature to give the α fluoro compounds 1a-d in good yields. The formation of difluoro products was not observed (less than 1% yield) under these reaction conditions. The reaction of α -substituted ketoesters 1e-f was less satisfactory and the yields of the fluorinated products 2e-f are lower than those of the unsubstituted ones 2ad, Table 2.

Footnotes

† Typical experimental procedure: To a solution of **1b** (316 mg, 2 mmol) in CH_2Cl_2 (10 ml) in a reaction vessel made from Teflon PFATM was added 9HF-pyridine (518 mg, 2 mmol) and **3b** (663 mg, 2.6 mmol). The mixture was stirred at room temp. for 3 h and aqueous sodium hydrogen carbonate was added to neutralize the mixture. The mixture was then extracted with diethyl ether (3×) and the combined organic layers were washed with aqueous copper sulfate to remove pyridine and then with water. The organic layer was dried (MgSO₄) and concentrated under vacuum. Purification by column chromatography (silica gel, dichloromethane) gave **2b** in 79% yield.

[‡] Spectra data for **2b**: ¹H NMR (400 MHz, CDCl₃) δ 0.942 (t, J 7.3 Hz, 3 H), 1.34–1.73 (m, 4 H), 2.3496 (d, J 4.1 Hz, 3 H), 4.26 (t, J 6.6 Hz, 2 H), 5.20 (d, J 52.0 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃)(CFCl₃ as an internal standard) δ –193.56 (d, J 52.5 Hz); IR (neat) v/cm⁻¹ 1750 and 1730 (HRMS: Calc. for C₈H₁₃O₃F: 176.0849. Found, 176.0844).

References

- 1 T. Fuchigami and T. Fujita, J. Org. Chem., 1994, 59, 7190.
- T. Tsushima, K. Kawada, T. Tsuji and S. Misaki, J. Org. Chem., 1982, 47, 1107; R. D. Chambers, M. P. Greenhall and J. Hutchinson, J. Chem. Soc., Chem. Commun., 1995, 21; S. T. Purrington, C. L. Bumgardner, N. V. Lazaridis and P. Singh, J. Org. Chem., 1987, 52, 4307; R. D. Chambers, M. P. Greenhall and J. Hutchinson, Tetrahedron, 1996, 52, 1.
- 3 C. E. Inman, R. E. Oesterling and E. A. Tyczkowski, J. Am. Chem. Soc., 1958, 80, 6533; H. Machleidt and V. Hartmann, *Liebigs Ann. Chem.*, 1964, 679, 9.
- 4 B. Zajc and M. Zupan, J. Chem. Soc., Chem. Commun., 1980, 759; S. S. Yemul and H. B. Kagan, *Tetrahedron Lett.*, 1980, 21, 277; B. Zajc and M. Zupan, J. Org. Chem., 1982, 47, 573.

- 5 O. Lerman and S. Rozen, J. Org. Chem., 1983, 48, 724; S. Rozen and M. Brand, Synthesis, 1985, 665; S. Rozen and D. Hebel, J. Org. Chem., 1990, 55, 2621.
- 6 S. Rozen and Y. Menahem, Tetrahedron Lett., 1979, 20, 725.
- 7 S. Stavber and M. Zupan, J. Chem. Soc., Chem. Commun., 1981, 795.
- 8 T. Umemoto, K. Kawada and K. Tomita, Tetrahedron Lett., 1986, 27, 4465; T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada and K. Tomita, J. Am. Chem. Soc., 1990, 112, 8563; G. Resnati and D. D. DesMarteau, J. Org. Chem., 1991, 56, 4925; R. E. Banks, V. Murtagh and E. Tsiliopoulos, J. Fluorine Chem., 1991, 52, 389; Z. Xu, D. D. DesMarteau and Y. Gotoh, J. Fluorine Chem., 1992, 58, 71; G. Resnati and D. D. DesMarteau, J. Org. Chem., J. Org. Chem., 1992, 57, 4281; R. E. Banks, N. J. Lawrence and A. L. Popplewell, J. Chem. Soc., Chem. Commun., 1994, 343.

9 W. Carpenter, J. Org. Chem., 1966, 31, 2688.

- M. Zupan and A. Pollak, J. Chem. Soc., Chem. Commun., 1975, 715;
 A. Gregorcic and M. Zupan, Bull. Chem. Soc. Jpn., 1976, 59, 517;
 A. Gregorcic and M. Zupan, J. Chem. Soc., Perkin Trans. 1, 1977, 1446;
 T. B. Patrick, J. J. Scheibel, W. E. Hall and Y. H. Lee, J. Org. Chem., 1980, 45, 4492;
 T. Tsushima, K. Kawada and T. Tsuji, Tetrahedron Lett., 1982, 23, 1165;
 J. Edmunds and W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1989, 881.
- 11 J. J. Edmunds and W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1989, 1348; W. B. Motherwell and J. A. Wilkinson, Synlett, 1991, 191, S. Caddick, L. Gazzard, W. B. Motherwell and J. A. Wilkinson, Tetrahedron, 1996, 52, 149.

Received, 7th May 1996; Com. 6/03135H