Bruce H. Riches and William Kitching"

Department *of* Chemistry, University *of* Queensland, Brisbane, Australia *4072*

 cis -5-Mesyloxycyclooctyltrimethylstannane solvolyses in **80% ethanol-20% water ca. 800 times faster than the trans-isomer and affords exclusively bicyclo[3.3.0]octane, consistent with a stereoelectronically regulated 1,5-percaudal interaction (ε-effect) from the C-Sn σ-bond.**

Carbon-silicon and carbon-tin o-bond participation in carbocation mediated processes is of considerable interest. The best known and exploited phenomenon is the ' β -silyl'¹ or ' β stannyl^{'2} effect 1,[†] but influences from more distant locations have been described and significant γ and δ -effects (2 and 3 respectively) have been identified in open-chain,³ conformationally controlled4 and rigid systems.5 There is no information on the ability of a tin group to transmit an effect formally across five-bonds (E-effect, **4),** but Lambert has reported that transmission across six-bonds (ζ -effect, 5) is inconsequential.^{6,7}

Recently, we proposed⁸ that certain electrophile induced reactions of medium-ring 1,2-epoxy-silanes and -stannanes, that cleanly formed bicyclic derivatives **8,** involved 1,5-deoxysilylation of an intermediate **7** formed from the complexed epoxide **6** (Scheme 1). The 1,5-deoxysilylation was envisaged as being carbocationic, formally an ε -effect across fivebonds. We now report kinetic and stereochemical evidence that confirms the operation of a stereoelectronically dependent stabilising effect in the solvolysis of *cis-* but not *trans-* 5-mesyloxycyclooctyltrimethylstannanes, and concordant product distributions, thus supporting the process depicted above in **7.**

cis- and **trans-5-Hydroxycyclooctyltrimethylstannanes 9a** and 10a,‡ respectively, were synthesised as shown in Scheme 2, and a preliminary low-temperature X-ray crystal structure establishes the anticipated trans-stereochemistry of **lo.§**

The oily cis-isomer **9a**‡ was obtained similarly after Mitsunobu inversion of the monoprotected diol **11.** The stannyl

alcohols **9a** and **10a** were converted to their trifluoroacetates, **9b, lob,** mesylates **9c, 1Oc** and tosylates **9d, 10d** by standard procedures.[‡]

The preferred solution conformations of derivatives of **9a** and **10a, based on NMR coupling constants** $(3J_{HH}$ **and** $3J_{SnC})$ **are the** crown and boat-chair, with the former predominating for the cis-isomers **(9b-d)** and the latter for the trans-isomers **(1Ob-d)** shown below for the *cis-* and trans-trifluoroacetates, **9b** and **10b** respectively (Fig. 1). The Me₃Sn group appears to be *quasi*equatorial in both isomeric series.¹⁰

Solvolysis in 80% ethanol-20% water, buffered with 2,6-lutidine, was monitored by Creary's ¹H NMR method.¹¹ The trifluoroacetates **9b** and **10b** experienced simple ester hydroly**sis** with a narrow rate spread, producing cyclooctanols **9a** and **1Oa** of retained stereochernistry.'2 However, the mesylates **9c** and **1Oc** and those from the *cis-* and **trans-5-methylcyclooctan-**01s were solvolysed, and the kinetic data are summarised in Table 1. The most striking result is the accelerated rate of *cis*stannyl derivative **9c** (entry *5),* relative to the parent mesylate $($ > 170) or its *trans*-isomer **10c**, $($ > 850), $($ entries 1, 4). The *cis-*5-methylmesylate (entry **3)** also solvolyses faster (factor of about 6) than its *trans*-relative (entry 2) and this enhancement,

Scheme 2 DHP = **dihydropyran, PPTS** = **pyridinium toluene-psulfonate**

Fig. 1 Coupling constants for 9b and **10b**

Chem. Commun., **1996 1907**

and the product differences, have been associated with enhanced trans-annular 1,5-hydride delivery to the developing cation centre.I3 This explanation is not attractive for **9c,** as 1,5-hydride migration would form the unfavourable α -stannyl cation,^{1,14} and could not account for the exclusive formation of bicyclo[3.3.0]octane. The products from trans-mesylates (entries 2, 4) are analogous,^{*j*} with unrearranged alkene and alcohol (or ether) predominating, although a low level of 1 -substituted cyclooctene indicates some 1,5-hydride shift, probably subsequent to cation formation for stereoelectronic reasons.¹⁵

The enhanced rate of **9c,** and exclusive formation of bicyclo[3.3.0]octane is best accounted for by a transannular percaudal interaction ('back-lobe' effect)3 that is formally an **E**effect, as shown below. The trans-isomer **(lOc,** entry **4)** cannot access a conformation permitting concerted percaudal interaction and ionisation, and its rate is therefore unexceptional. However, with a conformational change in the cation, ring closure competes (ca. 15%) with elimination and solvent capture, with the latter two processes giving tin-

Table 1 Rate constants for solvolyses of cyclooctylmesylates in 80% ethanol-20% water at 22 $^{\circ}$ C^a

^{*a*} Buffered with 2,6-lutidine and followed by ¹H NMR spectroscopy. Proportions of products based on GC-MS analysis of 'spent' solvolysis solutions, comparisons with the behaviour of authentic samples, and high field ¹H and ¹³C NMR spectra of 'spent' solvolysis solutions. b Based on estimates of $t_{1/2}$, calculated from the changing intensities, of the reducing and increasing Me3Sn signals in the 200 MHz **1H** NMR spectrum.

1908 *Chem. Commun.,* **1996**

containing products. The rate and product trends described for the mesylates are reproduced with the tosylates.

Participation of the C-Sn σ -bond in this way may be formally represented as electrophilic substitution at carbon with inversion of configuration, a precedented process in organotin chemistry (Scheme 3).¹⁶ The presently described process is also related to other carbocyclisations **'7** effected by formal carbocation substitution at a tin-bearing carbon atom.

Footnotes

t Structures 1-5 represent the a-skeletal frameworks only and do not necessarily represent optimised conformational arrangements for transmission of any effect.

 \ddagger All new compounds provided satisfactory spectral (multinuclear NMR and MS) and microanalytical or high resolution MS data.

0 We are grateful to Dr A Willis, Dr C. H. L. Kennard and **Mr** Karl Byriel for the data and full details will be published in a full paper.

1 Acetolysis of **cis-5-methylcyclooctyltosylate** has been reported13 to yield predominantly 1 -methylcyclooctene (84%) with some 5-methylcyclooctene (10%) and 1 -methylcyclooctanol *(ca. 5%)* whereas the trans-tosylate provided 8 and 74% of the 1- and 5-methylcyclooctenes respectively, and about 15% of a *cis,* **trans-5-methylcyclooctyl** acetate mixture. Results are similar, given the differences in solvent nucleophilicity between acetic acid (sodium acetate) and buffered aqueous ethanol.

References

- 1 J. B. Lambert, *Tetrahedron,* 1990, *46,* 2677 and references cited therein.
- 2 J. B. Lambert, G.-T. Wang and D. H. Teramura, J. *Org. Chem.,* 1988, 53, 5422.
- 3 V. J. Shiner, M. W. Ensinger and J. C. Huffmann, J. Am. Chem. Soc., 1989,111,7199.
- 4 J. B. Lambert, L. A. Salvador and J.-H. So, *Organometullics,* 1993, 12, 697.
- *5* W. Adcock, A. R. Krstic, P. J. Duggan, V. J. Shiner, J. Coope and M. W. Ensinger, J. *Am. Chem.* Soc., 1990, 112, 3140; W. Adcock, J. Coope, V. J. Shiner and N. A. Trout, J. *Org. Chem.,* 1990, *55,* 141 1.
- 6 J. B. **Lambert,** L. A. Salvador and C. L. Stem, J. *Org. Chem.,* 1993,58, 5428; J. B. Lambert and S. M. Ciro, J. *Org. Chem.,* 1996, 61, 1940.
- 7 In this general context, see R. Hoffman, A. Iwamura and W. J. Hehre, J. *Am. Chem. SOC.,* 1968,90, 1499.
- 8 A. P. Wells, B. H. Riches and W. Kitching, J. *Chem. SOC., Chem. Commun.,* 1992, 1575.
- 9 W. Kitching, H. A. Olszowy, J. Waugh and D. Doddfrell, J. *Org. Chem.,* 1978,43,898; J. San Fillipo, J. Silberman and P. J. Fagan, J. *Am. Chem. SOC.,* 1978, 100, 4834; W. Kitching, H. A. Olszowy and K. J. Harvey, J. *Org. Chem.,* 1982, 47, 1893 and references cited therein.
- 10 D. Doddrell, I. Burfitt, W. Kitching, M. Bullpit, C. Lee, R. J. Mynott, J. L. Considine, H. G. Kuivila and R. H. Sarma, J. *Am. Chem. SOC.,* 1974,%, **1640.**
- 11 X. Creary and Z. Jiang, *J. Org. Chem.,* 1994,59, 5106.
- 12 For similar results with some **cyclohexyltrifluoroacetates** see ref. 4.
- 13 A. C. Cope and D. M. Gale, J. *Am. Chem. SOC.,* 1963,85,3743.
- 14 Y. Apeloig and A. Stanger, J. *Am. Chem. SOC.,* 1985, 107,2806.
- 15 The solvolysis of cyclooctyl tosylate (in aqueous ethanol and **tri**fluorethanol) has been concluded to be a limiting k_c process (J. M. Harris, D. L. Mount, M. R. Smith and S. P. McManus, J. *Am. Chem.* Soc., 1977, 99, 1283) with ionisation facilitated by I-strain relief. See also A. A. Roberts and C. B. Anderson, *Tetrahedron Left.,* 1969, **44,** 3883; W. Parker and C. I. F. Watt, J. *Chem. SOC., Perkin Trans. I,* 1975, 1647.
- 16 F. R. Jensen and D. D. Davis, J. *Am. Chem.* **SOC.,** 1971, 93, 4048; A. Rahm and M.Pereyre, J. *Am. Chem.* **SOC.,** 1977,99, 1672; M. Gielen and R. Fosty, J. *Chem. Res. (M),* 1977, 2373; H. A. Olszowy and W.Kitching, J. *Org. Chem.,* 1982, 47, 5232.
- 17 T. L. Macdonald, S. Mahalingam and D. E. O'Dell, J. Am. Chem. Soc., 1981, 103, 6767 and references cited therein; T. L. Macdonald, C. M. Delahunty, K. Mean and D. E.O'Del1, *Tetrahedron Left.,* 1989, **30,** 1473; T. V. Lee and K. L. Ellis, *Tetrahedron Left.,* 1989, 30, 3555.

Scheme 3 *Received,* 20th May *1996; Corn. 61034760*