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cis-5-Mesyloxycycl~tyltrimethylstannane solvolyses in 
80% ethanol-20% water ca. 800 times faster than the 
trans-isomer and affords exclusively bicyclo[ 3.3.0]octane, 
consistent with a stereoelectronically regulated 
1,s-percaudal interaction (E-effect) from the C S n  o-bond. 

Carbon-silicon and carbon-tin o-bond participation in carbo- 
cation mediated processes is of considerable interest. The best 
known and exploited phenomenon is the 'p-silyl'l or 'p- 
stannyl'2 effect l,? but influences from more distant locations 
have been described and significant y and &effects (2 and 3 
respectively) have been identified in open-chain,3 conforma- 
tionally controlled4 and rigid systems.5 There is no information 
on the ability of a tin group to transmit an effect formally across 
five-bonds (E-effect, 4), but Lambert has reported that transmis- 
sion across six-bonds (5-effect, 5 )  is inc~nsequential.~,~ 

Recently, we proposed8 that certain electrophile induced 
reactions of medium-ring 1,2-epoxy-silanes and -stannanes, 
that cleanly formed bicyclic derivatives 8, involved 1,5-deoxy- 
silylation of an intermediate 7 formed from the complexed 
epoxide 6 (Scheme 1). The 1,5-deoxysilylation was envisaged 
as being carbocationic, formally an &-effect across five- 
bonds. We now report kinetic and stereochemical evidence that 
confirms the operation of a stereoelectronically dependent 
stabilising effect in the solvolysis of cis- but not trans- 
~-mesyloxycyc~ooctyltrimethylsta~anes, and concordant 
product distributions, thus supporting the process depicted 
above in 7. 

cis- and trans-5-Hydroxycyclooctyltrimethylstannanes 9a 
and lOa,$ respectively, were synthesised as shown in Scheme 2, 
and a preliminary low-temperature X-ray crystal structure 
establishes the anticipated trans-stereochemistry of lo.§ 

The oily cis-isomer 9aS was obtained similarly after 
Mitsunobu inversion of the monoprotected diol 11. The stannyl 
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alcohols 9a and 10a were converted to their trifluoroacetates, 
9b, lob, mesylates 9c, 1Oc and tosylates 9d, 10d by standard 
procedures. $ 

The preferred solution conformations of derivatives of 9a and 
10a, based on NMR coupling constants (3JHH and 3Js,,-) are the 
crown and boat-chair, with the former predominating for the 
cis-isomers (9b-d) and the latter for the trans-isomers (1Ob-d) 
shown below for the cis- and trans-trifluoroacetates, 9b and 10b 
respectively (Fig. 1). The Me3Sn group appears to be quasi- 
equatorial in both isomeric series.I0 

Solvolysis in 80% ethanol-20% water, buffered with 2,6-luti- 
dine, was monitored by Creary's 'H NMR method." The 
trifluoroacetates 9b and 10b experienced simple ester hydroly- 
sis with a narrow rate spread, producing cyclooctanols 9a and 
1Oa of retained stereochernistry.'2 However, the mesylates 9c 
and 1Oc and those from the cis- and trans-5-methylcyclooctan- 
01s were solvolysed, and the kinetic data are summarised in 
Table 1. The most striking result is the accelerated rate of cis- 
stannyl derivative 9c (entry 5 ) ,  relative to the parent mesylate 
( > 170) or its trans-isomer lOc, ( > 850), (entries 1,4). The cis- 
5-methylmesylate (entry 3) also solvolyses faster (factor of 
about 6) than its trans-relative (entry 2) and this enhancement, 
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Scheme 2 DHP = dihydropyran, PPTS = pyridinium toluene-p- 
sulfonate 
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Fig. 1 Coupling constants for 9b and 10b 
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and the product differences, have been associated with 
enhanced trans-annular 1,5-hydride delivery to the developing 
cation centre.I3 This explanation is not attractive for 9c, as 
1,5-hydride migration would form the unfavourable a-stannyl 
cation,I.l4 and could not account for the exclusive formation of 
bicyclo[3.3.0]octane. The products from trans-mesylates (en- 
tries 2,4) are analogous,fi with unrearranged alkene and alcohol 
(or ether) predominating, although a low level of 1 -substituted 
cyclooctene indicates some 1,5-hydride shift, probably sub- 
sequent to cation formation for stereoelectronic reasons. 15 

The enhanced rate of 9c, and exclusive formation of 
bicyclo[3.3.0]octane is best accounted for by a transannular 
percaudal interaction (‘back-lobe’ effect)3 that is formally an E- 
effect, as shown below. The trans-isomer (lOc, entry 4) cannot 
access a conformation permitting concerted percaudal inter- 
action and ionisation, and its rate is therefore 
unexceptional. However, with a conformational change in the 
cation, ring closure competes (ca. 15%) with elimination and 
solvent capture, with the latter two processes giving tin- 

Table 1 Rate constants for solvolyses of cyclooctylmesylates in 80% 
ethanol-20% water at 22 ‘Co 

Entry Substrate kl/lO-5 s-1 Rel. rate 
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2 
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0 Buffered with 2,6-lutidine and followed by IH NMR spectroscopy. 
Proportions of products based on GC-MS analysis of ‘spent’ solvolysis 
solutions, comparisons with the behaviour of authentic samples, and high 
field IH and 13C NMR spectra of ‘spent’ solvolysis solutions. Based on 
estimates of f I l 2 ,  calculated from the changing intensities, of the reducing 
and increasing Me3Sn signals in the 200 MHz 1H NMR spectrum. 
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containing products. The rate and product trends described for 
the mesylates are reproduced with the tosylates. 

Participation of the C-Sn a-bond in this way may be formally 
represented as electrophilic substitution at carbon with inver- 
sion of configuration, a precedented process in organotin 
chemistry (Scheme 3).*6 The presently described process is also 
related to other carbocyclisations ‘7 effected by formal carboca- 
tion substitution at a tin-bearing carbon atom. 

Footnotes 
t Structures 1-5 represent the a-skeletal frameworks only and do not 
necessarily represent optimised conformational arrangements for transmis- 
sion of any effect. 
$ All new compounds provided satisfactory spectral (multinuclear NMR 
and MS) and microanalytical or high resolution MS data. 
0 We are grateful to Dr A Willis, Dr C. H. L. Kennard and Mr Karl Byriel 
for the data and full details will be published in a full paper. 
1 Acetolysis of cis-5-methylcyclooctyltosylate has been reported13 to yield 
predominantly 1 -methylcyclooctene (84%) with some 5-methylcyclooctene 
(10%) and 1 -methylcyclooctanol (ca. 5%) whereas the trans-tosylate 
provided 8 and 74% of the 1- and 5-methylcyclooctenes respectively, and 
about 15% of a cis, trans-5-methylcyclooctyl acetate mixture. Results are 
similar, given the differences in solvent nucleophilicity between acetic acid 
(sodium acetate) and buffered aqueous ethanol. 
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