Synthesis and nucleophilic substitution of allenyl(m-nitropheny1)iodanes as a new propynyl cation-equivalent species: synthesis of propynyl ethers, esters, and amides

Michio Kida," Takuya Sueda," Satoru *Goto,a* **Tadashi Okuyamab and Masahito Ochiai*"**

^aFaculty of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770, Japan

Faculty of Engineering Sciences, Osaka University, Toyonaka, Osaka 560, Japan

Treatment of diacetoxy(m-nitropheny1)iodane with propynylsilanes in the presence of BF₃.Et₂O gives **allenyl(m-nitrophenyl)iodanes, which act as propynyl cation-equivalent species and undergo regioselective nucleophilic substitution with alcohols, carboxylic acids and nitriles to give propynyl ethers, esters and amides.**

We have reported [3,3]-sigmatropic rearrangement involving a hypervalent iodine atom in which allenyl(aryl)iodanes, generated by S_E2' reaction of aryliodanes with propynylsilanes in the presence of $BF_3 \tcdot Et_2O$, undergo a reductive iodonio-Claisen rearrangement at -20 °C in dichloromethane yielding *ortho*propynyliodoarenes in good yields.¹ When a π -donor methoxy group was introduced to the aromatic ring of aryliodanes at the *ortho* or *para* position, this aromatic *ortho* iodonio-Claisen rearrangement of allenyl(ary1)iodanes competes with deiodinative ipso iodonio-Claisen rearrangement yielding ipso-substituted propynylarenes.2 The *ortho vs.* ips0 selectivity depends on the solvent basicity and the extent of normal *ortho* selectivity increases with increased solvent basicity.3 In marked contrast, the presence of an electron-withdrawing nitro group at the *meta* position of allenyl(ary1)iodanes makes the reductive iodonio-Claisen rearrangement very difficult: for instance, no formation of rearranged products, 1 -(2-iodo-4-nitrophenyl)- and 1 **-(2-iodo-6-nitrophenyl)oct-2-yne,** was observed in the reaction of **diacetoxy(m-nitropheny1)iodane 1** with 1 -(trimethylsilyl)oct-2-yne 2a in dichloromethane and in this case mnitroiodobenzene was obtained quantitatively. We report here nucleophilic substitutions of allenyl(aryl)iodanes, generated from the m-nitroiodane **1** by the reaction with propynylsilanes **2,** in alcohols, carboxylic acids and nitriles, which result in selective formation of propynyl ethers, esters and amides, respectively.

When 2a was treated with an equivalent amount of the *m*nitroiodane **1** in methanol (100 equiv.) in the presence of $BF_3 \text{·} Et_2O$ (1 equiv.), which activates 1 by coordination to the oxygen atoms of the ligands on iodine(m), at room temperature for 6 h, replacement of a trimethylsilyl group by a methoxy group was observed and oct-2-ynyl methyl ether **3a** $(Nu = MeO)$ was obtained in 79% yield. While all of the oxidant, m-nitroiodane **1,** was consumed under these reaction conditions, a considerable amount of **2a** was recovered unchanged (18%). Use of 1.2 equiv. of **1** led to complete disappearance of **2a** and afforded **3a** (Nu = MeO) in 89% yield.

A similar tendency was observed in the nucleophilic substitutions of propynylsilane **2a** in primary and secondary alcohols; in these cases, even if 1.2 equiv. of **1** were employed, more than 30% of **2a** was recovered. The yields of **3a** and the recovered **2a** are as follows: in EtOH, **3a** (Nu = EtO, 59%) and **2a** (33%); in PrOH, **3a** (Nu = Pro, 37%) and **2a** (32%); in PriOH, **3a** (Nu = PriO, 29%) and **2a** (62%); in BusOH, **3a** (Nu = BusO, 38%) and **2a** (48%). It appears that the amount of recovered propynylsilane **2a** increases in the sequence MeOH < primary alcohols < secondary alcohols. These results suggest the occurrence of some competing reactions, in which the oxidant **1** was involved but not the propynylsilane **2a.**

The reaction that competes with the nucleophilic substitution of **2a** was found to be the oxidation of alcohols to carbonyl compounds and their derivatives by the combination of m nitroiodane 1 and BF_3 ·Et₂O. For instance, reaction of 1 with a large excess of propanol in the presence of $BF_3 \cdot Et_2O$ at 30 °C for 4 h gave 1,l-dipropoxypropane in 96% yield. Similar oxidation of BusOH (30 \degree C/15 min) and cyclohexanol (30 \degree C/ 1.5 h) afforded butan-2-one and cyclohexanone in 92 and 93% yields, respectively. Furthermore, it was found that the relative rates of oxidation of primary to secondary alcohols with **1** follows the order PrOH < cyclohexanol < BusOH. This BF_3 catalysed oxidation of alcohols with **1** probably involves a rapid ligand exchange on the hypervalent iodine of **1** with alcohols generating the alkoxyiodane **4,4** followed by a rate-limiting reductive elimination of m -nitroiodobenzene with concomitant α -C-H bond cleavage yielding carbonyl compounds,⁵ both steps being catalysed by BF_3 . A relatively large primary kinetic deuterium isotope effect $(k_H/k_D = 4.84)$ observed in the reaction of cyclohexanol- α -[²H] strongly indicates that the α -C-H bond cleavage is involved to a great extent in the rate determining step of the oxidation of alcohols.6 Therefore, it seems reasonable to assume that the increased amounts of the recovered propynylsilane **2a** in the order of methyl < primary < secondary alcohols, as mentioned above, probably reflect the differences in dissociation energies of the cleaving α -C-H bonds of alcohols:⁷ kcal mol⁻¹, CH₃OH (94), CH₃CH₂OH (93) and $(CH_3)_2CHOH$ (91).

Use of 2 equiv. of **1** led to the complete disappearance of **2a** in nucleophilic substitution with alcohols to afford high yields of propynyl ethers **3a.** The results are summarized in Table 1. Acetic acid also functions as a good nucleophile towards the generated allenyl(m-nitrophenyl)iodane; since the competing

oxidation of the nucleophile does not proceed in this case, use of an equivalent amount of the oxidant **1** gave a high yield of propynyl acetate $3a$ (Nu = AcO). α -Substituted propynylsilane **2d** similarly gave the substitution product **3d** selectively.

In addition, the reaction in acetonitrile afforded the propynyl amide $3a$ (Nu = MeCONH) in 91% yield. Use of propionitrile or benzonitrile as a nucleophile, however, led to poor results, giving the amide $3a$ (Nu = EtCONH or PhCONH) in less than 10% yield. Since hypervalent iodine(II1) reagents have been used for direct conversion of carboxamides to amines although secondary and tertiary amides are less reactive than primary amides,⁸ the low yields of the latter amide $3a$ (Nu = EtCONH) or PhCONH) might be attributed to the further reaction of this initially formed amide **3a** with **1.** Furthermore, it has been shown that relative rates of the reaction of amides $(RCONH₂)$ with **bis(trifluoroacetoxy)(phenyl)iodane** yielding amines $(RNH₂)$ are as follows: R (relative rate), Me $(1) < \overline{C}_5H_{11}(11)$ < But (62) < Pri **(84).9**

A plausible mechanism for the conversion of propynylsilanes **2** to propynyl ethers 3 (Nu = RO) by the reaction with 1 is given in Scheme 3. The initial formation of an allenyl(mnitrophenyl)iodane 5 by BF_3 -catalysed S_E2' reaction of aryliodane **1** with propynylsilane **2** and its follow-up collapse to propynyl cation **6** with reductive elimination of m-nitro-

Table 1 Nucleophilic substitutions of propynylsilane 2 using m-nitrophenyliodane 1^a

	Iodane 1 (equiv.)	NuH	t/h	Product 3	
Silane 2				Nu	Yield $(\%)^p$
a	1.2	MeOH	1.5	3a MeO	(89)
a	2.0	EtOH	\overline{c}	3a EtO	(91)
a	2.0	PrOH	2.5	3a PrO	(90)
a	2.0	$C_9H_{19}OH$	24	3a C ₉ H ₁₉ O	(87)
a	2.0	PriOH	2.5	$3a$ Pr ⁱ O	(86)
a	2.0	Bu ^s OH		3aBusO	(91)
\mathbf{a}	2.0	Bu'OH	16	3a Bu ^t O	(88)
а	1.0	ACOH	\overline{c}	$3a$ AcO	(90)
a	1.2	MeCN	1.5	3a MeCONH	91
b	1.2	MeOH	2	3b MeO	68(72)
b	1.05	AcOH	\overline{c}	3b ACO	63(74)
c	1.2	MeOH	2	3c MeO	68(85)
c	1.05	AcOH	\overline{c}	3c AcO	77(78)
c	1.2	MeCN	$\overline{\mathbf{3}}$	3c MeCONH	49
d	1.2	MeOH	\overline{c}	3d MeO	(63)
d	1.05	AcOH	$\overline{2}$	3d AcO	56(63)
d	1.2	MeCN	3	3d MeCONH	60

^{*a*} Reactions were carried in the presence of $BF_3·Et_2O$ equivalent to 1 in a nucleophilic solvent (100 equiv.) at room temp. under nitrogen. b Isolated yields. Parenthesis are GC yields.

iodobenzene seems most likely.^{1,10} Similar intermediate propynyl carbocations have been generated by S_N1 solvolysis of allenyl halides in aqueous alcohols.¹¹

We have reported that the phenyliodonio group is a remarkably good nucleofuge with a leaving ability 8×10^5 times greater than triflate, the so-called superleaving group,¹² and the leaving ability of the aryliodonio group increases with an increase in the electron-withdrawing ability of the ring substituent.¹³ The leaving ability of the *m*-nitrophenyliodonio group can be evaluated from the reported Hammett **p** value for solvolysis of **cyclohexenyl(ary1)iodonium** tetrafluoroborates to be 16 times greater than phenyliodonio group. Thus, it seems reasonable to assume that the very high leaving ability of the *m*nitrophenyliodonio group would be responsible for the selective collapse of **allenyl(m-nitropheny1)iodane** *5* to propynyl cation **6.** Furthermore, it is to be noted that, in the thermal aromatic Claisen rearrangement of prop-2-enyl aryl ethers, the presence of an electron-withdrawing group on the aromatic ring has been shown to retard the rearrangement.14 If this substituent effect holds **for** this [3,3]-sigmatropic rearrangement of allenyl- (aryl)iodane, the m-nitro group of *5* would retard the *ortho* Claisen rearrangement.

Mechanistic alternatives for the preferential formation of **3,** $e.g. S_N2'$ reaction, should be considered (Fig. 1) and this process cannot be ruled out.

References

- 1 M. Ochiai, T. Ito, Y. Takaoka and Y. Masaki, *J. Am. Chem.* Soc., 1991, 113, 1319; D. A. Gately, T. A. Luther, J. R. Norton, M. M. Miller and 0. P. Anderson, J. Org. *Chem.,* 1992, 57, 6496.
- 2 M. Ochiai, T. Ito and Y. Masaki, *J. Chem. SOC., Chem. Commun.,* 1992, 15.
- 3 M. Ochiai and T. Ito, J. *Org. Chem.,* 1995, *60,* 2274.
- 4 A. Seveno, G. Morel, A. Foucaud and E. Marchand, *Tetrahedron Lett.,* 1977, 3349.
- *5* For oxidation of alcohols with organoiodanes, see; T. Takaya, H. Enyo and E. Imoto, *Bull. Chem. Soc. Jpn.*, 1968, 41, 1032; J. Wicha, A. Zarecki and M. Kocor, *Tetrahedron Lett.*, 1973, 3635; K. Narasaka, A. Morikawa, K. Saigo and T. Mukaiyama, Bull.Chem. Soc. Jpn., 1977, 50,2773; T. Yokoo, K. Matsumoto, K. Oshima and K. Utimoto, *Chem. Lett.,* 1993, 571.
- 6 E. J. Corey and A. Palani, *Tetrahedron Lett.,* 1995, **36,** 7945.
- 7 D. **F.** McMillen and D. M. Golden, *Ann. Rev. Phys. Chem.,* 1982, **33,** 493; J. A. Kerr, *Chem. Rev.,* 1966,66,465.
- 8 For conversion of amides to amines with organoiodanes, see; M. Tamura, J. Jacyno and C. H. Stammer, *Tetrahedron Lett.,* 1986, *27,* 5435; I. M. Lazbin and G. F. Koser, *J. Org. Chem.,* 1987, 52, 476; R. M. Moriarty, C. J. Chany 11, R. K. Vaid, 0. Prakash and S. M. Tuladhar, *J. Org. Chem.,* 1993, 58, 2478.
- 9 G, M. Loudon, A. S. Radhakrishna, M. R. Almond, J. K. Blodgett and R. H. Boutin, J. *Org. Chem.,* 1984, **49,** 4272; R. H. Boutin and G. M. Loudon, *J. Org. Chem.,* 1984,49,4277.
- 10 P. Bourgeois and G. J. Merault, *Organomet. Chem.,* 1972, 39, C44; A. D. Despo, S. K. Chiu, T. Flood and P. E. Peterson, *J. Am. Chem. Soc.*, 1980,102,5120; J. Pomet, *Tetrahedron Lett.,* 1981,22,453; J.-P. Pillot, B. Bennetau, J. Dunogues and R. Calas, *Tetrahedron Lett.,* 1981, 22, 3401.
- 11 P. J. Stang, Z. Rappoport, M. Hanack and L. R. Subramanian, *Vinyl Cation,* Academic Press, New York, 1979. P. J. Stang, C. D. Lee, R. J. Hargrove and T. E. Dueber, *Tetrahedron Lett.,* 1971, 2519; T. L. Jacobs and D. M. Fenton, *J. Org. Chem.,* 1965, **30,** 1808; M. D. Schiavelli, S. C. Hixon, H. W. Moran and C. J. Boswell, *J. Am. Chem. SOC.,* 1971, 93, 6989; M. D. Schiavelli, R. P. Gilbert, W. A. Boynton and C. J. Boswell, *J. Am. Chem. Soc.*, 1972, 94, 5061.
- 12 P. J. Stang, M. Hanack and L. R. Subramanian, *Synthesis,* 1982, 85.
- 13 T. Okuyama, T. Takino, T. Sueda and M. Ochiai, *J. Am. Chem. SOC.,* 1995,117, 3360.
- 14 W. N. White, D. Gwynn, R. Schlitt, C. Girard and W. Fife, *J. Am. Chem. SOC.,* 1958,80,3271; H. L. Goering and R. R. Jacobson, *J. Am. Chem. SOC.,* 1958, 80, 3277.

Fig. 1 *Received, 11 th June 1996; Corn. 61041 16G*

1934 *Chem. Commun.,* **1996**