Loosely bonded adducts of plumbocene; structures and solution dynamics of $[(\eta-C_5H_5)_2Pb\cdot tmeda]$ and $[(\eta-C_5H_5)_2Pb\cdot 4,4'-Me_2bipy]$ (tmeda = Me₂NCH₂CH₂NMe₂, 4,4'-Me₂bipy = 4,4'-dimethylbipyridine)

Michael A. Beswick, Natalie L. Cromhout, Christopher N. Harmer, Paul R. Raithby, Christopher A. Russell, Justin S. B. Smith, Alexander Steiner and Dominic S. Wright*

Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW

The first Lewis-base adducts of a neutral p-block group metallocene, $[(\eta-C_5H_5)_2Pb\text{-tmeda}] 1$ and $[\eta-C_5H_5)_2Pb\text{-4},4'\text{-Me}_2bipy] 2$, result from the addition of tmeda and 4,4'-Me_2bipy to $[Pb(\eta-C_5H_5)_2]$ (1:1 equiv.); X-ray and solution studies reveal that the Lewis bases are only loosely associated to the Pb^{II} centres in these complexes.

Owing to minimal d-orbital involvement and to the more varied (ionic and covalent) nature of their metal-ligand interactions, main-group metallocenes are more structurally diverse and have less restricted electronic requirements^{1,2} than transition-metal metallocenes. The simplest Group 14 metallocenes, $[E(\eta (C_5H_5)$ (E = Sn, Pb), have 14 e bent sandwich structures in the gas phase.^{2h} The stability of the bent (rather than the linear) conformation has been explained by the admixing of the metal p_x atomic orbital with the initially antibonding lone-pair orbital, giving the required seven bonding molecular orbitals.³ Despite the presence of stoichiometrically active metal lone pairs, we have recently observed that nucleophilic addition of C_5H_5 to $[E(\eta-C_5H_5)]$ produces complexes containing $[E(\eta-C_5H_5)_3]^$ anions, in which the Sn and Pb centres accept, rather than donate, electron density.⁴ We report here that simple Lewisbase adducts of $[Pb(\eta - C_5H_5)_2]$ are readily prepared by dissolving plumbocene in toluene solutions containing bidentate N donors (Scheme 1).† The solid-state structures and solution dynamics of $[(\eta-C_5H_5)_2Pb\cdot tmeda]$ 1 and $[(\eta-C_5H_5)_2Pb\cdot 4,4'-$ Me₂bipy] 2 show that the weak Lewis acidity of plumbocene is subtly controlled by steric factors. These complexes are the first structurally characterised Lewis-base adducts of a neutral metallocene of any p-block metal.

Low-temperature X-ray crystallographic studies were undertaken on both complexes.[‡] Complexes 1 (Fig. 1) and 2 (Fig. 2) are both monomeric Lewis-base adducts in the solid state, in which the bidentate tmeda and 4,4'-Me₂bipy ligands chelate their Pb^{II} centres. In both complexes the C₅H₅ ligands adopt similar approximately η^3 -bonding modes. The Pb–C distances are on average longer than those observed for [Pb(η -C₅H₅)₂] {Pb–C 2.801(5)–2.911(4) in 1, 2.759(6)–2.926(7) Å in 2; *cf.* 2.78 Å in the solid state and 2.76 Å²ⁱ in the gas phase for [Pb(η -C₅H₅)₂]^{2h}}. In contrast to the staggered orientation of the C₅H₅ rings found in the gas-phase structure of monomeric [Pb(η -C₅H₅)₂],^{2h} the C₅H₅ ligands of 1 and 2 are eclipsed. This conformation of the C₅H₅ ligands results in the molecules of both complexes having overall C₂ symmetry.

The coordination of the Pb^{II} centres of 1 and 2 by the tmeda and 4,4'-Me₂bipy ligands reflects the inherent steric congestion in the [Pb(η -C₅H₅)₂] unit. The approach of the tmeda ligand in 1, perpendicular to the Cp_{centroid}–Pb–Cp_{centroid} axis, is hindered by the steric confrontation between the N-attached Me groups of the donor and the C₅H₅ rings. This situation results in extremely long Pb–N bond lengths [2.879(3) Å; *cf.* sum of the covalent radii of Pb and N 2.28 Å]. In contrast, the essentially planar geometry of 4,4'-Me₂bipy and the likely smaller coordination radius of the pyridyl-N centres (compared to that

Fig. 1 Molecular structure of 1. Hydrogen atoms have been omitted for clarity. Key bond lengths (Å) and angles (°): Pb–N(1) 2.879(3), Pb–C(1) 2.911(4), Pb–C(2) 2.890(4), Pb–C(3) 2.818(4), Pb–C(4) 2.801(5), Pb–C(5) 2.846(4), N(1)…N(1a) 3.046(4), Cp_{centroid}–Pb(1) 2.59; Cp_{centroid}–Pb–Cp_{centroid} 128.8, N(1)–Pb–N(1a) 63.9.

Fig. 2 Molecular structure of 2. Hydrogen atoms have been omitted for clarity. Key bond lengths (Å) and angles (°): Pb–N(1) 2.702(5), Pb–C(1) 2.819(6), Pb–C(2) 2.759(6), Pb–C(3) 2.826(7), Pb–C(4) 2.926(7), Pb–C(5) 2.907(7), N(1)…N(1a) 2.683(6), Cp_{centroid}–Pb 2.59; Cp_{centroid}–Pb–Cp_{centroid} 139.7, N(1)–Pb(1)–N(1a) 59.6.

Chem. Commun., 1996 1977

in aliphatic N donors) lead to closer approach of the ligand and to significantly shorter Pb–N bond lengths in 2 [2.702(5) Å]. As a consequence of the reduced steric demands of the bidentate ligand of 2, the [Pb(η -C₅H₅)₂] unit is less deformed than that in 1 [Cp_{centroid}–Pb–Cp_{centroid} 128.8° in 1 and 139.7° in 2; cf. 138° for [Pb(η -C₅H₅)₂] in the gas phase^{2h}].

Cryoscopic molecular mass measurements§ of 1 in benzene are consistent with a dynamic equilibrium involving the dissociation of the complex into $[Pb(\eta-C_5H_5)_2]$ and tmeda. A variable-temperature ¹H NMR study (*ca.* 0.02 mol dm⁻³) confirms the nature of this equilibrium process. The singlet C_5H_5 resonance at δ 5.79 observed at 298 K splits into two singlets at 233 K. On the basis of the relative ratios of these resonances (*ca.* 1:2) and their chemical shifts, the resonance at δ 6.02 can be assigned to $[Pb(\eta-C_5H_5)_2]$ and that at δ 6.03 to *intact* molecules of 1.

Surprisingly, despite the relative shortness of the Pb–N bond lengths in the solid-state structure of 2, molecular-mass measurements show that the complex is completely dissociated in benzene over a range of concentrations.§ There are also no significant changes in the ¹H NMR spectrum of 2 (*ca.* 0.01 mol dm⁻³) down to 183 K and the pattern of the aromatic resonances shows that the 4,4'-Me₂bipy ligand is uncoordinated. These apparently anomolous observations may simply reflect the presence of greater interaction between the 4,4'-Me₂bipy ligand and the aromatic solvents employed, which could encourage dissociation of 2.

We gratefully acknowledge the EPSRC (M. A. B., C. N. H., P. R. R., D. S. W.), the European Union (Fellowship for A. S.), Sidney Sussex College Cambridge (Fellowship for C. A. R. and the ORS and The Commonwealth Trust (N. L. C.) for financial support.

Footnotes

† Syntheses. 1: to a freshly prepared sample of $[Pb(η-C_5H_5)_2]$ (1.10 g, 3.0 mmol) dissolved in toluene (20 ml) was added tmeda (0.45 ml, 3.0 mmol), the yellow solution was heated to reflux and filtered while hot (porosity 3, Celite). The filtrate was reduced under vacuum (*ca.* 10 ml), resulting in the formation of a pale yellow precipitate which redissolved on warming. Storage at room temp. (12 h), gave pale yellow crystalline blocks of 1 (0.84 g, 62%); decomp. 125–130 °C; IR (Nujol), v/cm⁻¹ 3068w v(C–H) C₅H₅; ¹H NMR (400.14 MHz, [²H₈]toluene, 0.02 mol dm⁻³); 298 K, δ 5.79 (s, 10 H, C₅H₅), 2.26 (s, 4 H, CH₂, tmeda), 2.08 (s, 12 H, Me₂N); 233 K, δ 6.03 (s, C₅H₅, intact 1), 6.02 {s, C₅H₅, [Pb(η-C₅H₅)₂] { (10 H, ratio *ca.* 1 : 2), 1.70 (s, 16 H, CH₂, Me₂N, tmeda). Cooling to 183 K only resulted in broadening of the C₅H₅ and tmeda resonances. Calc. for [C₁₆H₂₆N₂Pb]_n: C, 42.4; H, 5.8; N, 6.2. Found; C, 42.3; H, 5.7; N, 6.1%.

2: the complex was prepared in an identical manner to 1, addition of 4,4'-MeMe₂bipy (0.55 g, 3 mmol) to $[Pb(\eta-C_3H_5)]$ (1.10 g, 3.0 mmol) dissolved in toluene (20 ml), giving a yellow solution which was filtered while hot (porosity 3, Celite). Reduction of the filtrate (*ca*. 10 ml) gave a pale yellow precipitate which was recrystallised at room temp. (12 h), giving orange crystalline blocks of **2** (0.72 g, 46%); mp 135 °C; IR (Nujol), v/cm⁻¹ 3068w v(C-H) C₅H₅; ¹H NMR (+25 °C, 400.14 MHz, [²H]toluene, 0.01 mol dm⁻³); 298 K, δ 8.55 [d, J_{HH} 0.6 Hz, 2 H, C(3)–H], 8.46 [d, J_{H-H} 5.0 Hz, 2 H, C(5)–H], 6.62 [d, J_{H-H} 5.0 Hz, 2 H, C(6)–H], 5.77 (s, 10 H, C₅H₅), 1.96 [s, 6 H, C(4)–Me]. Cooling to 183 K gave no significant changes in the spectrum. Calc. for $[C_{22}H_{22}N_2Pb]_n$: C, 50.6; H, 4.2; N, 5.4: Found; C, 50.5; H, 4.3; N, 5.4%.

‡ Crystal data: 1; C₁₆H₂₆N₂Pb, M = 453.58, monoclinic, space group C2/c, a = 14.242(2), b = 9.296(2), c = 13.512(2) Å, $\beta = 111.04(2)^{\circ}$, U = 1669.6(5) Å³, Z = 4, $D_c = 1.804$ Mg m⁻³, $\lambda = 0.71073$ Å, T = 153(2)K, μ (Mo-K α) = 10.095 mm⁻¹. Data were collected on a Stoe–Siemens AED diffractometer using an oil-coated rapidly cooled crystal of dimensions 0.3 × 0.2 × 0.2 mm in an oil drop⁵ by the θ – ω method (4.38 < θ < 27.42°). Of a total of 2803 collected reflections, 1863 were independent $(R_{int} = 0.040)$. The data were corrected for absorption by a semiempirical method based on ψ -scans. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 to final values of $R1[F > 4\sigma(F)] = 0.022$ and wR2 (all data) = 0.058.6 Largest peak and hole in the final difference map; 1,263, -1.044 e A⁻³.

2; $C_{22}H_{22}N_2Pb$, M = 521.61, orthorhombic, space group Pbcn, $a = 13.492(3), b = 9.866(2), c = 14.250(2) \text{ Å}, U = 1896.8(7) \text{ Å}^3, Z = 4,$ $D_{\rm c} = 1.826 \text{ Mg m}^{-3}$. $\lambda = 0.71073 \text{ Å}$, T = 153(2) K, $\mu(\text{Mo-K}\alpha) = 8.900$ mm⁻¹. Data were collected on a Stoe-Siemens AED diffractometer using an oil-coated rapidly cooled crystal of dimensions $0.2 \times 0.2 \times 0.2$ mm in an oil drop⁵ by the θ - ω method (4.13 < θ < 27.46°). Of a total of 2885 collected reflections, 1231 were independent ($R_{int} = 0.045$). The data were corrected for absorption by a semiempirical method based on ψ -scans. The structure was solved by direct methods and refined by full-matrix leastsquares methods on F^2 to final values of $R1 [F > 4\sigma(F)] = 0.023$ and wR2(all data) = 0.060 [$R1 = \Sigma |F_o - F_c|/\Sigma |F_o|$, $wR2 = \{[\Sigma w(F_o^2 - F_c^2)^2]/\Sigma wF_o^4\}^{0.5}$, $w = 1/[\sigma^2(F_o^2) + (xP)^2 + yP]$, $P = (F_o^2 + 2F_c^2/_3)].^6$ Largest peak and hole in the final difference map; 0.662, -0.921 e A⁻³. Symmetry transformations used to generate equivalent atoms for 1 and 2, -x, y, -z + $\frac{1}{2}$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/174.

§ Cryoscopic measurements were carried out using a specially designed apparatus which allows the freezing points of solutions to be determined under dry anaerobic conditions.⁷ Predried (molecular sieve, 13X), degassed (Ar) cryoscopic grade benzene (Fisons) was used in all measurements. For $[(\eta-C_5H_5)_2Pb\text{-tmeda}]_n$ 1; $M_r = 227 \pm 5$, $n = 0.50 \pm 0.01$ (0.009 mol dm⁻³), $M_r = 251 \pm 2$, $n = 0.55 \pm 0.01$ (0.031 mol dm⁻³). These data give an equilibrium constant for dissociation of *ca*. 0.05 mol dm⁻³.⁷ For $[(\eta-C_5H_5)_2Pb\text{-}4,4'-Me_2\text{bipy}]_n$ 2, $M_r = 251 \pm 5$, $n = 0.48 \pm 0.01$ (0.013 mol dm⁻³), $M_r = 253 \pm 3$, $n = 0.49 \pm 0.01$ (0.021 mol dm⁻³).

References

- 1 P. Jutzi, Adv. Organomet. Chem., 1986, 26, 217.
- (a) C. Panatonni, E. Frasson and F. Mengegus, Nature, 1963, 199, 1087; (b) J. K. Tyler, A. P. Cox and J. Sheridan, Nature, 1959, 183, 1182; (c) P. Jutzi, F. X. Kohl and C. Krüger, Angew. Chem., 1979, 91, 81; Angew. Chem., Int. Ed. Engl., 1979, 18, 59; (d) P. Jutzi, F. X. Kohl, P. Hoffmann, C. Krüger and Y.-H. Tsay, Chem. Ber., 1980, 113, 757; (e) W. Bünder and E. Weiss, J. Organomet. Chem., 1975, 92, 1; (f) S. Harder and H. Prosenc, Angew. Chem., 1994, 106, 1830; Angew. Chem., Int. Ed. Engl., 1994, 33, 1744; (g) J. L. Atwood, W. E. Hunter, A. H. Cowley, R. A. Jones and C. A. Stewart, J. Chem. Soc., Chem. Commun., 1981, 925; (h) A. Almenningen, A. Haaland and T. Motzfeld, J. Organomet. Chem., 1967, 7, 97; (i) C. Panattoni, G. Bombieri and U. Croatto, Acta Crystallogr., Sect. A, 1966, 21, 823; (j) P. Jutzi, D. Kanne and C. Krüger, Angew. Chem., 1986, 98, 163; Angew. Chem., Int. Ed. Engl., 1986, 25, 164 (k) M. Grenz, E. Hahn, W.-W. duMont and J. Pickardt, Angew. Chem., 1984, 96, 69; Angew. Chem., Int. Ed. Engl., 1984, 23, 61; (1) P. Jutzi, Th. Wippermann, C. Krüger and H.-J. Kraus, Angew. Chem., 1983, 95, 244; Angew. Chem., Int. Ed. Engl., 1983, 22, 250; E. O. Fischer and S. Schreiner, Chem. Ber., 1960, 63, 1417.
- 3 J. Almlof, L. Fernholt, K. Faegri, Jr., A. Haaland, B. E. R. Schilling, R. Seip and K. Taugløl, *Acta Chem. Scand.*, Ser. A, 1963, **131**, 37.
- 4 M. G. Davidson, D. Stalke and D. S. Wright, Angew. Chem., 1992, 104, 1265; Angew. Chem., Int. Ed. Engl., 1992, 31, 1226; A. J. Edwards, M. A. Paver, P. R. Raithby, C. A. Russell, A. Steiner, D. Stalke and D. S. Wright, J. Chem. Soc., Dalton Trans., 1993, 1465; D. A. Armstrong, M. G. Davidson, D. Moncrieff, M. A. Paver, C. A. Russell, D. Stalke, A. Steiner and D. S. Wright, Organometallics, in preparation.
- 5 T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26, 615.
- 6 G. M. Sheldrick, SHELXL-93, Göttingen, 1993.
- 7 M. G. Davidson, R. Snaith, D. Stalke and D. S. Wright, J. Org. Chem., 1993, 58, 2810.

Received, 28th May 1996; Com. 6/03694E