Bucky-ligands: fullerene-substituted oligopyridines for metallosupramolecular chemistry

Dominique Armspach,^a Edwin C. Constable,^{*a} François Diederich,^b Catherine E. Housecroft^{*a} and Jean-François Nierengarten^b

^a Institut für Anorganische Chemie, Spitalstrasse 51, CH-4056 Basel, Switzerland

^b Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich, Switzerland

A new series of ligands are prepared in which C_{60} units are attached to 2,2':6',2"-terpyridines; ruthenium(1) diads and triads are prepared in which the pendant fullerene acts as an electron acceptor.

Fullerenes possess useful electronic and photochemical properties which make them natural candidates for incorporation into supramolecular photoconversion systems.^{1,2} We have recently studied the synthesis and properties of cluster-functionalised 2,2':6',2''-terpyridines (tpy) which can undergo coordinationinitiated assembly into multifunctional systems³ and an obvious extension of this work is to fullerenes. A low-yield route to a bis(fullerene)-functionalised rotaxane⁴ and a single example of a remote-functionalised ruthenium complex⁵ have recently been described and preliminary results indicated significant interactions between the pendant fullerenes and metal-based photocentres. We now describe a convenient and versatile synthesis of fullerene-substituted tpy ligands and present preliminary data concerning coordination triads incorporating such electron acceptors.

We decided to incorporate polyethyleneoxy spacers between the tpy metal-binding domain and the fullerene to allow a series of compounds with variable metal-fullerene distances to be prepared. The synthetic routes leading to the two fullerenefunctionalised ligands **4a** and **4b** are presented in Scheme 1. The key malonate derivatives **2a** and **2b** were prepared in 47 and 57% yield in two steps from the known compounds 4'-MeSO₂tpy⁶ and 4'-HOtpy⁷ respectively. The synthetic utility of the metal-activated nucleophilic displacement⁸ reaction of 4'-MeSO₂tpy is of note: the facile removal of iron as hydrated oxide⁹ after treatment with alkaline hydrogen peroxide leads to an extremely simple workup. Esterification of the glycol intermediates **1a** and **1b** with EtO₂CCH₂COCl gave the malonates **2a** and **2b** in 70% yield. These compounds were

Scheme 1 Reagents and conditions: i, n = 0, $X = SO_2Me$. (a) FeCl₂, HOCH₂CH₂OH, (b) H₂O₂, NaOH (aq); n = 1, X = OH, ClCH₂CH₂OCH₂CH₂OH, NaI, K₂CO₃, dmf; ii, ClCOCH₂CO₂Et, py, CH₂Cl₂, 25 °C; iii, DBU, thf, 0 °C; iv, CBr₄, thf, -78 °C; v, C₆₀, DBU, C₆H₅Me, room temp.; vi, [Ru(Xtpy)Cl₃], AgBF₄, Me₂CO, dmf (X = H or NMe₂)

brominated by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ane (DBU) followed by CBr_4 to give the species **3a** and **3b** as colourless oils which were used without further purification.

The fullerene incorporation was achieved by reaction of **3a** or **3b** with C_{60} in toluene in the presence of DBU.¹⁰ After chromatographic purification, the new ligands were obtained as dark brown solids in respectable yields (**4a**, 55%; **4b**, 52%). All spectroscopic and analytical data were fully in accord with the proposed formulations.[‡] In each case parent ions were observed in the FAB or MALDI TOF mass spectra of the compounds. The two new ligands exhibited fullerene-centred reductions¹¹ at -1.09, -1.43 and -1.86 V (*vs.* Fc-Fc⁺, all potentials ±20 mV). A most interesting result is that the electrochemical behaviour of these compounds is almost independent of solvent (MeCN, thf or CH₂Cl₂) in stark contrast to C₆₀ itself.^{1a,11b}

In order to probe the utility of the new fullerene-functionalised ligand we have prepared ruthenium(II) diad and triad systems.¹² The complexes [Ru(tpy)(4a)][PF₆]₂ (48%) and $[Ru(tpy)(4b)][PF_6]_2$ (52%) were obtained as dark red microcrystalline solids from the reaction in dmf of 4a or 4b respectively with the solvento complex resulting from the reaction of [Ru(tpy)Cl₃] with AgBF₄ in acetone, followed by precipitation with NH_4PF_6 and chromatographic purification of the crude salts. The mass spectrometric ({Ru(tpy)(4a)} m/z1460, {Ru(tpy)(4b)} m/z 1504) together with ¹H and ¹³C NMR spectroscopic data fully confirmed the formation of the heteroleptic complex and the latter suggested that the incorporation of the fullerene resutled in little perturbation of the tpy ligand {¹H NMR $\Delta\delta$ [Ru(tpy)₂]²⁺-[Ru(tpy)(4a)]²⁺ = ±0.05}. The complexes exhibit the expected MLCT absorption at 480 nm in their electronic spectra and are electrochemically active with Ru^{II} - Ru^{III} process at +0.821 V { $[Ru(tpy)(4a)][PF_6]_2$ } and +0.798 V {[Ru(tpy)(4b)][PF₆]₂} {cf. +0.834 V for [Ru(tpy)- $(EtOtpy)][PF_6]_2$, EtOtpy = 4'-ethoxy 2,2': 6',2"-terpyridine¹³} (all potentials vs. Fc-Fc+). The expected fullerene-centred reduction waves are also observed.

Finally, we constructed a triad system with a tpy ligand bearing an electron donor which might interact with the fullerene electron acceptor. The replacement of [Ru(tpy)Cl₃] by $[Ru(Me_2Ntpy)Cl_3]$ (Me₂Ntpy = 4'-N,N-dimethylamino-2,2':6',2"-terpyridine) in the above preparations gave [Ru- $(Me_2Ntpy)(4a)$][PF₆]₂ or [Ru(Me₂Ntpy)(4b)][PF₆]₂ in modest (22, 23% respectively) yields. Each complex exhibited mass spectrometric ([$Ru(Me_2Ntpy)(4a)$][PF_6]₂: m/z 1502, {Ru- $(Me_2Ntpy)(4a)$; 1649, {Ru $(Me_2Ntpy)(4a)(PF_6)$ } and NMR (¹H and ¹³C) spectroscopic properties fully in accord with the proposed structures. As expected,^{9,13} the introduction of the electron releasing dimethylamino substituent has a dramatic effect upon the RuII-RuIII redox processes for these complexes, which are shifted over 300 mV with respect to [Ru(tpy)-(4a)][PF₆]₂ and are observed at +0.500 (±10) V vs. Fc–Fc⁺. The reductions associated with the fullerene component are not shifted with respect to the parent free ligands. All of the above data suggest that we have indeed our desired donor-metalacceptor triad system. Furthermore, these data indicate that there is no charge transfer from the amine to the fullerene in the ground state.

We are currently investigating the photochemical and photophysical properties of these and related fullerene functionalised complexes.

We should like to thank the Schweizerischer Nationalfonds zur Forderung wissenschaftlichen Forschung (Grant numbers 21-37325.93, 20-043359.95 and 21-42027.94) and the University of Basel for support.

Footnotes

† E-mail: constable@ubaclu.unibas.ch

‡ Data: **4a**; ¹H NMR (300 MHz, CDCl₃): δ 1.45 (3 H, t, CH₃CH₂), 4.53 (2 H, q, CH₃CH₂), 4.62 (2 H, m, CH₂O), 4.93 (2 H, m, CH₂O), 7.31 (2 H, dd, H⁵), 7.80 (2 H, dd, H⁴), 8.02 (2 H, s, H^{3'}), 8.57 (2 H, d, H³), 8.66 (2 H, m, H⁶). ¹³C NMR (125 MHz, CDCl₃) δ 14.22, 52.01, 63.59, 64.96, 65.66, 71.43, 107.40, 121.32, 123.91, 136.77, 138.41, 139.51, 140.81, 140.95, 141.78, 141.86, 142.14, 142.15, 142.76, 142.87, 142.90, 142.91, 142.93, 142.98, 143.73, 143.85, 144.53, 144.58, 144.60, 144.63, 144.65, 144.82, 144.90, 144.94, 145.10, 145; 13, 145.20, 145.22, 145.38, 149.02, 155.80, 157.32 163.36, 163.66, 166.41. MS (FAB): *m*/*z* 1126 [M⁺ + H]; C₈₂H₁₉N₃O₅·3.3 H₂O. Calc. C, 80.38; H, 2.47; N 3.43. Found C, 80.27; H, 2.12; N, 3.93%.

4b; ¹H NMR (300 MHz, CDCl₃): δ 1.45 (3 H, CH₃CH₂), 3.97 (2 H, m, CH₂O), 3.99 (2 H, m, CH₂O), 4.37 (2 H, m, CH₂O), 4.56 (2 H, q, CH₃CH₂), 4.70 (2 H, m, CH₂O), 7.31 (2 H, dd, H⁵), 7.83 (2 H, dd, H⁴), 8.02 (2 H, s, H³), 8.59 (2 H, dd, H³), 8.66 (2 H, m, H⁶); ¹³C NMR (125 MHz, CDCl₃) δ 14.21, 52.13, 63.50, 66.15, 67.91, 69.13, 69.48, 71.50, 107.45, 121.34, 123.82, 136.72, 138.76, 139.24, 140.87, 141.81, 142.13, 142.14, 142.87, 142.90, 142.91, 142.96, 142.99, 143.80, 143.84, 144.53, 144.54, 144.55, 144.59, 144.60, 144.62, 144.82, 145.07, 145.09, 145.10, 145.14, 145;17, 145.19, 145.40, 145.86, 146.37, 149.01, 155.96, 157.17, 163.44, 163.68, 166.79; MS (MALDI-TOF): *m/z* 1170 [M + H⁺], 1192 [M⁺ + Na].

References

- 1 (a) A. Hirsch, *The Chemistry of the Fullerenes*, Georg Thieme Verlag, Stuttgart, 1994 and references therein; (b) F. Diederich and C. Thilgen, *Science*, 1996, **271**, 317.
- See for example: S. I. Khan, A. M. Oliver, M. N. Paddon-Row and Y. Rubin, J. Am. Chem. Soc., 1993, 115, 4919; R. M. Williams, J. M. Zwier and J. W. Verhoeven, J. Am. Chem. Soc., 1995, 117, 4093; H. Imahori, K. Hagiwara, T. Akiyama, S. Taniguchi, T. Okada and Y. Sakata, Chem. Lett., 1995, 265; H. Imahori and Y. Sakata, Chem. Lett., 1996, 199.
- 3 D. Armspach, E. C. Constable, C. E. Housecroft, M. Neuburger and M. Zehnder, *Supramol. Chem.*, 1996, 7, 97; D. Armspach, E. C. Constable, C. E. Housecroft, M. Nenburger and M. Zehnder, *New J. Chem.*, 1996, 20, 65; D. Armspach, M. Cattalini, E. C. Constable, C. E. Housecroft and D. Phillips, *Chem. Commun.*, 1996, 1823.
- 4 F. Diederich, C. Dietrich-Buchecker, J.-F. Nierengarten and J.-P. Sauvage, J. Chem. Soc., Chem. Commun., 1995, 781.
- 5 M. Maggini, A. Dono, G. Scorrano and M. Prato, J. Chem. Soc., Chem. Commun., 1995, 845.
- 6 N. Armaroli, V. Balzani, E. C. Constable, M. Maestri and A. M. W. Cargill Thompson, *Polyhedron*, 1992, **11**, 2707.
- 7 E. C. Constable and M. D. Ward, J. Chem. Soc., Dalton Trans., 1990, 1405.
- 8 E. C. Constable, *Metals and Ligand Reactivity*, VCH, Weinheim, 1995.
- 9 E. C. Constable, M. D. Ward and S. Corr, *Inorg. Chim. Acta*, 1988, **141**, 201.
- 10 C. Bingel, Chem. Ber., 1993, 126, 1957.
- (a) C. Boudon, J.-P. Gisselbrecht, M. Gross, L. Isaacs, H. L. Anderson, R. Faust and F. Diederich, *Helv. Chim. Acta*, 1993, **78**, 1334; (b)
 F. Paolucci, M. Marcaccio, S. Roffia, G. Orlandi, F. Zerbetto, M. Prato, M. Maggini and G. Scorrano, *J. Am. Chem. Soc.*, 1995, **117**, 6572.
- 12 For examples of diads and triads based upon [Ru(tpy)₂]²⁺ see: J. P. Sauvage, J. P. Colin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola and L. Flamigni, *Chem. Rev.*, 1994, 94, 993.
- 13 E. C. Constable, A. M. W. Cargill Thompson and D. A. Tocher, *New J. Chem.*, 1992, **16**, 855.

Received, 6th June 1996; Com. 6/03987A