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o-Quinodimethane 3 is generated effectively by KrF 
excimer laser (248 nm) photolysis of 
1,2-bis(phenoxymethyl)-, 1,2-bis(phenylthiomethyl)- and 
1,2-bis(phenylselenomethyl)-benzene via a two-photon 
process; cycloaddition of 3 with several dienophiles gives 
corresponding adducts in a maximum yield of 48%. 

o-Quinodimethane [3, 5,6-bis(methylene)cyclohexa- 1,3-diene] 
is a useful reactive species which is frequently used in organic 
synthesis as a building block. Several methods for its generation 
and applications have been reported.' However, many of the 
methods require long synthetic steps for the preparation of its 
precursors and/or a long reaction time. Here we report a fast and 
simple synthesis of 3 from easily accessible precursors by KrF 
excimer laser-induced photolysis of 172-bis(phenoxymethyl)- 
benzene 1-0 ,  1,2-bi~(phenylthiomethyl)benzene 1-S and 
1,2-bis(phenylselenornethyl)benzene l-Se$ (Scheme 1). Di- 
radical 3b is the expected intermediate initially formed by a 
double homolytic cleavage of C-X (X = 0, S, Se) bonds5 by a 
two-photon process which can easily isomerize to the resonance 
form 3a t, 3b.2,3 o-Quinodimethane 3 was then trapped with 
various dienophiles 4 to give the corresponding cycloaddition 
products 5.  

mol dm-3; 4: mol dm-3) under a nitrogen atmosphere at 
room temperature using a synthetic-quartz cell of 10 mm width 
and 1 mm optical path. A KrF excimer laser [248 nm, 100 
mJ cm-2 pulse-', pulsewidth 26 ns (fwhm)] was irradiated on 
the solution (1, 2, 3 and 5 laser pulses). The dienophiles used 
were maleic anhydride 4a, dimethyl maleate 4b, dimethyl 
fumarate 4c, fumaronitrile 4d and dimethyl acetylenedicarbox- 
ylate 4e. The experiments on the fluence dependence were 
conducted similarly with a single laser pulse by using a 
synthetic-quartz cell of 10 mm optical path. The conversion of 
1 and the yield of the reaction products 5 were analysed by 
HPLC in comparison with the authentic samples.7 

The molar absorptivities of 1 and 4 in acetonitrile at 248 nm 
were measured by a UV spectrometer: 670 (1-0), 13 600 (1-S), 
16780 (1-Se), 160 (4a), 470 (4b), 400 (4c), 0 (4d) and 230 (4e) 
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Scheme 1 

dm3 mol-* cm-1. This result indicates that, in the cases of 1-S 
and 1-Se, most of the photons are absorbed by 1 and not by the 
existing dienophiles 4. The chromophores of 1 are two PhX 
moieties and an ortho-dialkylbenzene moiety. The PhX leaving 
groups are expected to absorb the laser energy more effec- 
t i ~ e l y . ~  

Fig. 1 shows the fluence dependence on the reaction between 
1-0 ,  1-S, 1-Se and maleic anhydride 4a in 20-140 mJ cm-2 
pulse -l  in the 10 mm optical-path cell. As seen from Fig. 1, the 
slope of the consumption of 1 vs. laser fluence for a double- 
logarithmic plot was unity, whereas that of the yields of 5a was 
two. This result indicates that the consumption of 1 proceeds by 
a one-photon process but the formation of 3 is by a two-photon 
process. The saturation of the consumptions of 1-S, 1-Se and the 
yield of 5a in the reaction with 1-Se was, however, observed at 
the high laser fluence.11 

As seen in Fig. 1 ,  the rate of the consumption of 1 was in the 
order 1-Se = 1-S > 1-0 .  The order is parallel to that of the 
molar absorptivities of 1-0,  1-S and 1-Se; the molar absorptiv- 
ities of 1-S and 1-Se showed almost the same value but that of 
1 - 0  was two orders in magnitude smaller than the others. In 
contrast to the consumption of 1, an irregular trend was 
observed in the yield of 5a, in which 1 - 0  falls out from the line, 
i .e.  1-Se > 1 - 0  > 1-S. This tendency seems to reflect the 
facility of the second bond cleavage. A naive comparison of C- 
X (X = 0, S, Se) bond dissociation energies5 gives the expected 
order, 1-Se > 1-S > 1-0.  However, MO calculations** 
showed that monoradicals 2-S and 2-Se favour the bridged 
forms 2b-S and 2b-Se, whereas the 2 - 0  can only take the open 
form 2a-0. Participation of the stable bridged form 2b-S and 
2b-Se increases the dissociation energy for the second leaving 
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Fig. 1 Laser fluence dependence on the consumption of 1 and yield of 5a as 
a function of KrF excimer laser fluence. 1-0 ,  1-S, 1-Se open symbols and 
5a closed symbols. Substrates: A , A (1-0); W, 0 (1-S); a, 0 (1-Se). 
Concentration: mol dm-3 1 and 10-3 mol dm-3 4a in acetonitrile. 
Optical path: 10 mm. The results are the average of two independent 
runs. 
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group, which hinders the cleavage for the formation of 3, and 
thus reversing the order for the yield of 5a between 1-0  and l-S; 
the order between 2-Se and 2-0  was not reversed, which is due 
to the weak C-Se bond even in the bridged form. 

Rums 1-3 in Table 1 show the reaction between 1-0, l-S, 
l-Se and 4a with 1 mm optical path. The result shows that both 
the conversion of 1 and the yield of 5a increased with the 
decrease of the optical path (Table 1, runs 1-3 vs. Fig. 1 at 100 
mJ cm-2 pulse-'). The reactions with other dienophiles are 
shown in runs 4-7. As seen in runs 3-7, the consumption of 
l-Se was not dependent on the type of the dienophiles present, 
which is consistent with the fact that most of the photons were 
absorbed by l-Se due to the large difference in the molar 
absorptivities. In spite of the large conversions of 1 the yield of 
5 was lower than expected, which implies insufficient formation 
of 3 from 2. It suggests the existence of side reactions from 2 

Table 1 Consumption of 1 and yield of cycloadducts 5" 

Precursor Dienophile No. of laser Yield of 5 Consumption 
Run 1 4 pulses (%I of 1 (%) 

1 1-0 a 1 
56 

2 l-s a 1 
36 

3 l-Se a 1 
56 

4 l-Se b lb 
5 l-Se c 1 

56 

6 l-Se d lb 
7 l-Se e 1 

5 b  

13f0.3 30f 1.9 
28 f 1.4 77 f 2.9 
13f0.6 90f0.2 
30 f 2.3 99 f 0.1 
43 f 2.2 91 f 0.7 
48 f 0.6 - 100 f 0.3 
4.7 f 0.3 89 f 1.7 
16f 1 .9~ 88f 1.6 
2022.8' - 100fO.l 
39 f 4.2 93 f 0.4 

2.3 f 0.3 94 f 0.8 
4.0f0.1 - 100f0.2 

KrF excimer laser fluence: 100 mJ cm-2 pulse-'; optical path: 1 mm; 
concentration: mol dm-3 1 and 10-3 mol dm-3 4 in acetonitrile; the 
results are the average of two independent runs. b Highest yield of 5 
obtained among 1-, 2-, 3- and 5-laser-pulse photolyses. Yield of 5b; 2.4 f 
0.3% (1 pulse), 3.2 f 1.0% (5 pulses). 

leading to some stable products; this is supported by the 
detection of some by-products in the HPLC analyses, which 
also appeared in the absence of the dienophiles. 

Footnotes 
t E-mail:ouchi@nimc.go.jp 
$ Compounds 1-0, l-S and 1-Se were synthesized in one step from 
commercially available 1,2-bis(bromornethyl)benzene in good yields. 
5 Similar bond cleavage with a KrF excimer laser have been reported in the 
reaction of 1,s-bis(substituted-methyl)naphthalenes, which formed ace- 
na~hthene .~  
1 Authentic samples 5a-e were synthesized by conventional procedures; IH 
and 13C NMR, IR and mass spectra of each sample were identical with the 
reported data. 
11 In the case of the photolyses with 1 mm optical path, the saturation of the 
consumption of 1 and the yield of 5a was observed even from the low 
fluence. 
** Calculated by using the PM3 method (RHF, CI) in MOPAC ver. 6.0 [cf. 
J. J. P. Stewart, QCPE Bull., 1989,9, 101. The calculation showed the heats 
of formation of 80.9 and 72.1 kcal mol- (1 cal = 4.184 J) for 2a-S and 2b- 
S, and 59.2 and 36.8 kcal mol-1 for 2a-Se and 2b-Se. In the case of 2-0, the 
heat of formation for 2a-0 was calculated to be 44.6 kcal mol-1; however, 
the calculation starting from the bridged form 2b-0 did not give stable 
structure but lead to the open form 2a-0. 
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