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The aromatic phosphine 1 reacts with (cod)PtC12 to yield 
the C-H activation product 2; treatment of 2 with HCl 
results in overall selective functionalization of the strong 
Ar-Me bond to generate MeCl and the Ar-Pt complex 3. 

The development of soluble transition-metal complexes capable 
of the selective activation and functionalization of carbon- 
carbon bonds under mild conditions is a highly desirable goal 
and a subject of considerable interest.' Recently, we reported 
the cleavage of an unstrained and unactivated carbon-carbon 
bond by a rhodium(1) complex under mild conditions,2a which 
led to selective methylene transfer into non-polar Si-H, Si-Si 
and C-H bonds.2b Direct C-C oxidative addition to rhodium(1) 
was also observed.2c We report here on the competitive 
activation of C-H and C-C bonds with platinum(I1) leading to 
selective functionalization of the carbon-carbon bond using a 
polar substrate (HCI) with no overall change in the metal 
oxidation state. 

Reaction of the bisphosphine 1,3-bis(diisopropylphosphi- 
nomethy1ene)mesitylene (1; dippmH)2b with a stoichiometric 
amount of (cod)PtC12 (cod = cycloocta-1,5-diene) in thf at 
room temperature leads to the formation of (dippm)PtCl 2,+ 
possessing a methylene group bridging between the aromatic 
ring and the metal centre (Scheme 1). Remarkably, heating of 
the thermally stable 2 in a benzene4ioxane solution at 82 "C 
with a tenfold excess of HC1 for 45 min results in the formation 
of methyl chloride and the Ar-Pt complex 3.3 Methyl chloride 
was detected by NMR and by GC. Complexes 2 and 3 have been 
characterized spectroscopically by various NMR techniques 
and by FDMS.5 31P{ 'H) NMR follow-up of the reaction of 
complex 2 with HCI shows the formation of a new species 
(presumably D) giving rise to a singlet at 6 35.23 flanked by 
platinum satellites (lJptp = 1919.3 Hz) which is in equilibrium 
with 2 (Fig. l).l The relatively small platinum-phosphorus 
coupling constant might suggest a PtIV oxidation state: 
although further identification is hampered by the low concen- 
tration and instability of the intermediate. The overall process (2 
+ 3) is first order in 2 with kobs = 1.43 X 10-3 s-1 at 82 "C 
(Fig. 1). 
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Mechanistically, coordination of 1 to the PtI1 centre, leading 
to the formation of cis-(dippmH)PtCI2 A, is likely to precede the 
selective C-H activation step (Scheme 2).11 Activation of C-H 
bonds by Pt" phosphine complexes is postulated to involve 
three-coordinate 14-electron species.5.6 The reaction may 
proceed by dissociation of a chloride to generate a 14-electron 
T-shaped intermediate B7 which is in equilibrium with the 
sterically more favourable C.8 Subsequently C-H activation 
gives the alkylhydride PtIV complex D and reductive elimina- 
tion affords 2 and HCI, which is a reversible process.79 Hence, 
treating 2 with an excess of HC1 shifts the equilibrium of the 
kinetically favourable C-H activation process towards C, which 
is likely to be a common intermediate for the C-H and C-C 
activation processes. C can undergo electrophilic attack by the 
metal on the ips0 carbon of the aromatic ring resulting in an 
arenonium complex E, which might undergo a reversible 
1,2-methyl shift affording the PtIV complex F,'O regenerating 
the aromatic TC system. Alternatively, complex F can be formed 
directly from C by a concerted oxidative addition process. 
Oxidative addition of strained carbon-carbon bonds to PtI1 is 
known," although here a non-strained, strong C-C bond is 
involved. Reductive elimination from F can give 3 and MeC1.I2 
Treating the thermally stable 3 in benzene with an excess of Me1 
results in halide exchange to afford 4, suggesting the existence 
of an equilibrium between F and 3.12,13 The observation of D 
shows that the rate-determining step is not protonation of the 
metal complex, but probably involves a later step such as the 
formation of a 14-electron complex C or the C-C activation 
itself. 

The postulated mechanism involving an arenonium inter- 
mediate is well precented by the work of van Koten and co- 
workers.12-14 in which it was shown that a NCN-type Pt" 
complex, similar to 3, reacts reversibly with Me1 to yield an 
arenonium complex analogous to E. This process was proven to 
proceed via a PtIV intermediate, similar to F.12 A theoretical 
studylo predicted that a 1,2-methyl shift between the ips0 
carbon of the aromatic group and the metal centre is an allowed 
process. The reported C-C cleavage of the arenonium 
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Scheme 1 C-H and C-C activation Fig. 1 3lP( IH} NMR progress of the reaction of complex 2 with HCl 
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cation12-14 is undoubtedly driven by the generation of the 
aromatic system. 

Complex 3 was recovered unchanged when treated with an 
excess of MeC1, indicating that the C-C activation generating 
MeCl is thermodynamically more favourable than the compet- 
ing C-H activation process which generates HC1, while the 
latter is kinetically prefered. Although the Me-Cl bond (EsD 
= 84 kcal mol-1; 1 cal = 4.184 J) is weaker than H-C1 (103 
kcal mol-l)15 and Ar-Me is stronger than ArCH2-H (e.g Ph- 
Me 102 kcal mol-1, PhCH2-H 88 kcal mol-I), 16 the C-C 
activation thermodynamics are more than compensated by the 
formed H-CH2Cl bonds (EBD = 100.9 kcal mol-1). Moreover, 
the Ar-M bond is expected to be much stronger than the 
ArCH2-M bond.17 

This study shows that it is possible to achieve selective 
activation of an unstrained C-C bond. The overall process 
involves functionalization of a strong Ar-Me bond with PtC1, to 
generate Ar-PtC1 and Me-C1. Formally, the transformation 
from 2 to 3 can be viewed as a new entry into the 'methylene 
transfer' chemistry,,b in which a methylene group is transferred 
to HCl. The system that we reported previously involves 
rhodium(r) and non-polar substrates. Our results indicate that 
platinum(1r) complexes may be designed to thermodynamically 
prefer C-C over C-H activation with overall retention of the 
metal oxidation state and functionalization of the carbon- 
carbon single bond by polar substrates. 
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Footnotes 
t E-mail:comilst@ wiccmail.weizmann.ac.il 
$ An analogous complex, (dippm)PtI, having similar spectroscopic 
properties has been characterized by X-ray analysis; FDMS: M+ 701. 
9 Spectral data for 2:$ 'H NMR (C@6,400.1 MHz): 6 6.5 1 ( s ,  1 H, p-H of 
C6HPt), 2.91 [dt, 2J(H,H) 14.9, 2J(H,P) 3.4, 3J(H,Pt) 54.6 Hz, 2 H, CH2P, 
left part of AB quarter], 2.53 [d, 2J(H,H) 14.9 Hz, 2 H, CHlP, right part of 
AB quarter], 2.32 [t, 3J(H,P) 9.9, 2J(H,Pt) 92.0 Hz, 2 H, ArCH2Pt], 2.27 (m, 
2 H, CHMe2), 2.18 (s, 6 H, Me2C,HPt), 1.89 (m, 2 H; CHMe2), 1.20 [dd, 
"(H,H) 7.8, 3J(H,P) 15.2 Hz, 12 H, CHMe21, 1.05 [dd, 3J(H,H) 7.2,3J(H,P) 
15.0 Hz, 6 H, CHMe2], 0.84 [dd, "(H,H) 7.2, 3J(H,P) 13.3 Hz, 6 H, 
CHMe2]. 31P( ' H )  NMR (C6D6, 161.9 MHz): 6 69.05 [s, IJ(P,Pt) 3599 Hz]. 
Elemental analysis for C23H41C11P2Pt.0.5thf calc: C, 46.47; H, 7.02. 
Found: C, 46.52; H, 6.81%. FDMS: M+ 610. 

Spectral data for 3: lH NMR (400.1, C6D6): 6 6.75 (s, 1 H, p-H of 
C6HPt), 2.72 [vt, J(H,P) 4.2, J(H,Pt) 18.5 Hz, 4 H, CH2P], 2.26 (m, 4 H, 
CHMe2), 2.19 (s, 6 H, Me,C,HPt), 1.39 [dd,J(H,H) 7.2,J(H,P) 16.4 Hz, 12 
H, CHMe2], 0.91 [dd,J(H,H) 7.l,J(H,P) 14.7 Hz, 12 H, CHMe2]. 31P( 1HJ 

596. 
fl Addition of bases such as H2N(CH2)30H results in disappearance of D 
and an increase of 2. 
11 A study of the coordination chemistry of diphosphines to Pd*l and Pt" will 
be published elsewhere. 

NMR (C6D6, 161.9 MHz): 6 56.37 [s, 'J(P,Pt) 2857 Hz]. FDMS: M' 
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