Activation of a non-strained C-C bond with platinum(I1)

Milko E. van der Boom, Heinz-Bernhard Kraatz, Yehoshoa Ben-David and David Milstein*?

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 761 00, Israel

The aromatic phosphine 1 reacts with (cod)PtCl₂ to yield **the C-H activation product 2; treatment of 2 with HCl results in overall selective functionalization of the strong Ar-Me bond to generate MeCl and the Ar-Pt complex** 3.

The development of soluble transition-metal complexes capable of the selective activation and functionalization of carboncarbon bonds under mild conditions is a highly desirable goal and a subject of considerable interest.¹ Recently, we reported the cleavage of an unstrained and unactivated carbon-carbon bond by a rhodium(1) complex under mild conditions,^{2a} which led to selective methylene transfer into non-polar Si-H, Si-Si and C-H bonds.^{2b} Direct C-C oxidative addition to rhodium(1) was also observed.^{2c} We report here on the competitive activation of C-H and C-C bonds with platinum(I1) leading to selective functionalization of the carbon-carbon bond using a polar substrate (HCI) with no overall change in the metal oxidation state.

Reaction of the bisphosphine **1,3-bis(diisopropylphosphi**nomethylene)mesitylene (1; dippmH)^{2b} with a stoichiometric amount of $(cod)PtCl₂ (cod = cycloocta-1,5-diene)$ in the at room temperature leads to the formation of (dippm)PtCl 2, \ddagger possessing a methylene group bridging between the aromatic ring and the metal centre (Scheme 1). Remarkably, heating of the thermally stable 2 in a benzene-dioxane solution at 82 $^{\circ}$ C with a tenfold excess of HC1 for 45 min results in the formation of methyl chloride and the Ar-Pt complex 3.3 Methyl chloride was detected by NMR and by GC. Complexes **2** and **3** have been characterized spectroscopically by various NMR techniques and by FDMS. \S ³¹P{¹H} NMR follow-up of the reaction of complex **2** with HCI shows the formation of a new species (presumably \bf{D}) giving rise to a singlet at δ 35.23 flanked by platinum satellites ($V_{\text{PtP}} = 1919.3 \text{ Hz}$) which is in equilibrium with 2 (Fig. 1).] The relatively small platinum-phosphorus coupling constant might suggest a Pf^{IV} oxidation state,⁴ although further identification is hampered by the low concentration and instability of the intermediate. The overall process **(2** (Fig. 1).

Mechanistically, coordination of **1** to the PtI1 centre, leading to the formation of cis-(dippmH)PtCl₂ **A**, is likely to precede the selective C-H activation step (Scheme 2). Activation of C-H bonds by Pt^{II} phosphine complexes is postulated to involve three-coordinate 14-electron species.5.6 The reaction may proceed by dissociation of a chloride to generate a 14-electron T-shaped intermediate **B7** which is in equilibrium with the sterically more favourable **C.8** Subsequently C-H activation gives the alkylhydride PtIV complex **D** and reductive elimination affords **2** and HCI, which is a reversible process.79 Hence, treating **2** with an excess of HC1 shifts the equilibrium of the kinetically favourable C-H activation process towards **C,** which is likely to be a common intermediate for the C-H and C-C activation processes. **C** can undergo electrophilic attack by the metal on the *ipso* carbon of the aromatic ring resulting in an arenonium complex **E,** which might undergo a reversible 1,2-methyl shift affording the Pt^{IV} complex \vec{F} ,¹⁰ regenerating the aromatic π system. Alternatively, complex **F** can be formed directly from **C** by a concerted oxidative addition process. Oxidative addition of strained carbon-carbon bonds to Pt^{II} is known, 11 although here a non-strained, strong C-C bond is involved. Reductive elimination from **F** can give 3 and MeCl.¹² Treating the thermally stable 3 in benzene with an excess of Me1 results in halide exchange to afford **4,** suggesting the existence of an equilibrium between F and 3.12,13 The observation of **D** shows that the rate-determining step is not protonation of the metal complex, but probably involves a later step such as the formation of a 14-electron complex **C** or the C-C activation itself.

The postulated mechanism involving an arenonium intermediate is well precented by the work of van Koten and coworkers.¹²⁻¹⁴ in which it was shown that a NCN-type Pt^{II} complex, similar to 3, reacts reversibly with Me1 to yield an arenonium complex analogous to **E.** This process was proven to proceed via a $\bar{P}t^{IV}$ intermediate, similar to $\bar{F}t^{12}$. A theoretical study¹⁰ predicted that a 1,2-methyl shift between the $ipso$ carbon of the aromatic group and the metal centre is an allowed process. The reported C-C cleavage of the arenonium

Scheme 1 C-H and C-C activation Fig. 1 31P(H } NMR progress of the reaction of complex 2 with HCl

 $cation¹²⁻¹⁴$ is undoubtedly driven by the generation of the aromatic system.

Complex **3** was recovered unchanged when treated with an excess of MeCl, indicating that the C-C activation generating MeCl is thermodynamically more favourable than the competing C-H activation process which generates HC1, while the latter is kinetically prefered. Although the Me-Cl bond *(E_{BD}*) $= 84$ kcal mol⁻¹; 1 cal $= 4.184$ J) is weaker than H-Cl (103 kcal mol⁻¹)¹⁵ and Ar-Me is stronger than ArCH₂-H *(e.g Ph*-Me 102 kcal mol⁻¹, PhCH₂-H 88 kcal mol⁻¹), ¹⁶ the C-C activation thermodynamics are more than compensated by the formed H–CH₂Cl bonds ($E_{BD} = 100.9$ kcal mol⁻¹). Moreover, the Ar-M bond is expected to be much stronger than the $ArCH₂-M$ bond.¹⁷

This study shows that it is possible to achieve selective activation of an unstrained C-C bond. The overall process involves functionalization of a strong Ar–Me bond with PrCl_2 to generate Ar-PtC1 and Me-C1. Formally, the transformation from **2** to **3** can be viewed as a new entry into the 'methylene transfer' chemistry, $2b$ in which a methylene group is transferred to HCl. The system that we reported previously involves rhodium(I) and non-polar substrates. Our results indicate that platinum(II) complexes may be designed to thermodynamically prefer C-C over C-H activation with overall retention of the metal oxidation state and functionalization of the carboncarbon single bond by polar substrates.

The research was supported by the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel (grant no. 94-00172). H.-B. K. thanks the MINERVA foundation for a

fellowship. D. M. is the holder of the Israel Matz Professorial Chair of Organic Chemistry.

Footnotes

t E-mail:comilst@ wiccmail.weizmann.ac.il

\$ An analogous complex, (dippm)PtI, having similar spectroscopic properties has been characterized by X-ray analysis; FDMS: M+ 701.

9 *Spectral data* for **2:\$** 'H NMR (C@6,400.1 MHz): 6 6.5 1 *(s,* **¹**H, p-H of C_6 HPt), 2.91 [dt, ²J(H,H) 14.9, ²J(H,P) 3.4, ³J(H,Pt) 54.6 Hz, 2 H, CH₂P, left part of AB quarter], 2.53 [d, $2J(H,H)$ 14.9 Hz, 2 H, CH₂P, right part of AB quarter], 2.32 [t, 3J(H,P) 9.9, 2J(H,Pt) 92.0 Hz, 2 H, ArCH2Pt], 2.27 (m, 2 H, CHMe2), 2.18 **(s,** 6 H, Me2C,HPt), 1.89 (m, 2 **H;** CHMe2), 1.20 [dd, 3J(H,H) 7.8, 3J(H,P) 15.2 Hz, 12 H, CHMe₂], 1.05 [dd, 3J(H,H) 7.2, 3J(H,P) 15.0 Hz, 6 H, CHMe₂, 0.84 [dd, $3J(H,H)$ 7.2, $3J(H,P)$ 13.3 Hz, 6 H, CHMe₂]. ³¹P{¹H} NMR (C₆D₆, 161.9 MHz): δ 69.05 [s, ¹J(P,Pt) 3599 Hz]. Elemental analysis for $C_{23}H_{41}Cl_1P_2Pt \cdot 0.5thf$: calc: C, 46.47; H, 7.02. Found: C, 46.52; H, 6.81%. FDMS: M+ 610.

Spectral data for 3: ¹H NMR (400.1, C₆D₆): δ 6.75 (s, 1 H, p-H of C_6 HPt), 2.72 [vt, $J(H, P)$ 4.2, $J(H, Pt)$ 18.5 Hz, 4 H, CH_2P], 2.26 (m, 4 H, CHMe₂), 2.19 (s, 6 H, Me₂C₆HPt), 1.39 [dd, J(H,H) 7.2, J(H,P) 16.4 Hz, 12 H, CHMe₂], 0.91 [dd, J(H,H) 7.1, J(H,P) 14.7 Hz, 12 H, CHMe₂]. ³¹P{¹H} 596. NMR (C6D6, 161.9 MHz): 6 56.37 **[s,** 'J(P,Pt) 2857 Hz]. FDMS: M'

 \parallel Addition of bases such as H₂N(CH₂)₃OH results in disappearance of **D** and an increase of **2.**

 \parallel A study of the coordination chemistry of diphosphines to Pd^{II} and Pt^{II} will be published elsewhere.

References

- **1** R. H. Crabtree, *Chem. Rev.,* 1985, *85,* 245 and references therein; J. W. Suggs and C.-H. Jun, J. *Am. Chem. Soc.,* 1984, 106, 3054; R. A. Periana and R. G. Bergman, *J. Am. Chem. Soc.*, 1986, 108, 7346; M. Murakami, H. Amii and Y. Ito, *Nature,* 1994, 370, 540.
- 2 *(a)* M. Gozin, A. Weisman, Y. Ben-David and D. Milstein, *Nature,* 1993, 364,699; *(6)* M. Gozin, M. Aizenberg, **S.-Y.** Liou, A. Weisman, Y. Ben-David and D. Milstein, *Nature,* 1994, 370, 42; (c) **S.-Y.** Liou, **M.** Gozin and D. Milstein, *J. Am. Chem.* SOC., 1995,117,9774; *(6)* **S.-Y.** Liou, M. Gozin and D. Milstein, *J. Chem. Soc., Chem. Commun.*, 1995, 1965.
- 3 We have independently synthesized complex 3 from 1,3-bis(diiso**propy1phosphinomethylene)xylene** (dippxH)2b (lacking the 2-Me group) and (cod)PtC12 employing a synthetic procedure analogous to the one reported by M. A. Bennett, H. Jin and A. C. Willis, *J. Organomet. Chem.,* 1993,451,249.
- 4 **F.** H. Allen and A. Pidcock, *J. Chem.* SOC. *A,* 1968, 2700.
- 5 P. Foley, R. DiCosimo and G. M. Whitesides, *J. Am. Chem. Soc.*, 1980, 102, 6713.
- 6 M. E. van der Boom, S.-Y. Liou, L. J. W. Shimon, Y. Ben-David and D. Milstein, *Organometallics,* 1996, 15, 2562.
- 7 R. L. Brainard, W. R. Nutt, T. R. Lee and G. M. Whitesides, *Organometallics,* 1988, 7, 2379.
- 8 A. Yamamoto, *Organotransition Metal Chemistry,* Wiley, New York, 1986; **S.** Komiya, T. A. Albright, R. Hoffmann and J. K. Kochi, *J. Am. Chem. Soc.,* 1976,98, 7255.
- 9 **S. S.** Stahl, J. A. Labinger and J. E. Bercaw, *J. Am. Chem. Soc.,* 1995, 117, 9371; G. **S.** Hill, L. M. Rendina and R. J. Puddephatt, *Organometallics,* 1995, 14, 4966.
- 10 J. V. Ortiz. Z. Havlas and R. Hoffmann, *Helv. Chim. Acta,* 1984, 67, 1.
- 11 *C.* F. H. Tipper, *J. Chem. Soc.,* 1955, 2045.
- 12 J. Terheijden, G. van Koten, I. C. Vinke and A. L. Spek, J. *Am. Chem.* Soc., 1985, 107, 2891.
- 13 A. **J.** Canty and G. van Koten, *Acc. Chem. Res.,* 1995, **28,** 406.
- 14 D. M. Grove, G. van Koten, J. N. Louwen, J. G. Nolles, A. L. Spek and H. J. C. Ubbels, *J. Am. Chem. Soc.,* 1982, 104, 6609; D. M. Grove, G. van Koten and H. J. C. Ubbels, *Organometallics,* 1982, 1, 1366.
- 15 *CRC Handbook of Chemistry and Physics, 57th edn.,* 1975-77, CRC Press, Inc., Cleveland, OH.
- 16 D. F. McMillen and D. M. **A.** Golden, *Rev. Phys. Chem.,* 1982, 33, 493.
- 17 J. A. Martinho-Simoes and **J.** L. Beauchamp, *Chem. Rev.,* 1990,90,629; W. D. Jones and F. J. Feher, *J. Am. Chem. Soc.*, 1984, 106, 1650.

Scheme 2 Postulated mechanism *Received, 24th June 1996; Corn. 6104396H*

2168 *Chem. Commun.,* **1996**