Fluorescent signalling of the brain neurotransmitter γ -aminobutyric acid and related amino acid zwitterions

A. Prasanna de Silva, H. Q. Nimal Gunaratne, Catherine McVeigh, Glenn E. M. Maguire, Pamela R. S. Maxwell and Emma O'Hanlon

School of Chemistry, Queen's University, Belfast, UK BT9 5AG

Fluorescent PET (photoinduced electron transfer) sensor 1 with monoaza-18-crown-6 ether and guanidinium receptor units shows a significant fluorescence enhancement with γ -aminobutyric acid (GABA) in mixed aqueous solution.

The field of fluorescent sensors has developed to the point that a range of inorganic cations can now be targeted successfully.¹ PET has been a particularly valuable design principle in this regard² and even some inorganic anions can be accommodated in sensing schemes.³ In spite of their structural complexity, several classes of organic species have also succumbed. Among neutral organics, steroids and sugars are prominent.⁴ Organic cations and anions are represented by α, ω -alkanediammonium, nucleotides and acetylcholine.⁵ We are not aware of any fluorescent sensors (*i.e.* nondestructive monitors) which directly target zwitterionic species.⁶ We now present a fluorescent PET sensor 1 for GABA and related amino acid zwitterions, particularly important since GABA is a principal neurotransmitter in the brain.⁷

Sensor 1 consists of monoaza-18-crown-6 ether, a reasonable receptor for the ammonium terminal⁸ of GABA, while a guanidinium unit serves as a receptor for the carboxylate end.^{8b,9} Importantly, an azacrown ether unit can engage in PET with an anthracene fluorophore positioned nearby and ammonium ion binding can cause fluorescence recovery.^{5b} The anthracene unit also serves as a rigid backbone between the two receptor units to confer a degree of linear recognition when various α, ω -amino acid zwitterions are presented to 1 (Fig. 1). The arrangement of the various components in 1 follows the format of Schmidtchen's ditopic receptor which binds GABA zwitterion in preference to ammonium ions.¹⁰ Scheme 1 outlines the synthesis of 1.[†]

The fluorescence of dialkylaminomethyl anthracenes is known to be 'switched on' with protons and 1 is no exception. 1 shows a fluorescence enhancement factor (FE) of 70 and a pK_a of 7.4. Therefore, amino acid binding has been studied at pH 9.5 to minimize interference by protons, while maintaining the amino acids largely in their zwitterionic form. Methanol-water (3:2, v/v) was used as the solvent to permit significant host-

Fig. 1

guest binding *via* hydrogen bonding and ion pairing while allowing us to approach physiological conditions with higher generations of **1**. Several amino acid zwitterions cause useful fluorescence enhancements in **1**, with negligible change in the emission band shape and wavelength as expected for a fluorescent PET sensor.^{2a,b} The dependence of fluorescence intensity upon amino acid concentration was analysed according to the Benesi–Hildebrand equation¹¹ and the binding constants (β) obtained are reported in Table 1 along with the corresponding fluorescence enhancement factors (FE). The linear recognition capability of sensor **1** is evident from the patterns of both these parameters. If we focus on the biologically important zwitterions, it is notable that **1** responds

Scheme 1 Reagents and conditions: i, monoaza-18-crown-6 ether, Na₂CO₃, C₆H₆; ii, BH₃·Me₂S, THF; iii, 3,5-dimethylpyrazole-1-carboxyamidine nitrate, Et₃N, THF¹⁵

Table 1 Parameters derived from the fluorescence enhancement of 1 with various organic guests^a

Guest	Binding constant (β)/dm ³ mol ⁻¹	Fluorescence enhancement factor (FE) ^e
H ₃ N+CH ₂ CO ₂ -	d	1.2
$H_3N^+(CH_2)_2CO_2^-$	17	1.9
$H_3N^+(CH_2)_3CO_2^-$	36	2.2
$H_3N^+(CH_2)_4CO_2^-$	84	3.5
$H_{3}N^{+}(CH_{2})_{5}CO_{2}^{-}$	54	3.1
$H_3N^+(CH_2)_7CO_2^-$	44	3.1
$H_3N+CH(CO_2^{-})(CH_2)_2CO_2^{-}$	d	1.1
$Me(CH_2)_2NH_3^{+b}$	79	2.3
MeCO ₂ - <i>c</i>	d	1.1

^{*a*} 10⁻⁵M Sensor 1 in MeOH–H₂O (3:2, *v/v*) at pH 9.5 maintained with 10⁻³ M Me₃N and adjusted with Me₄NOH and HCl. 10⁻² M Me₄NCl was used to minimize ionic strength variations. The absorption spectroscopic parameters of 1 are: Absorption maxima = 393, 372 and 354 nm. Extinction coefficients = 8600, 8600 and 5200 dm³ mol⁻¹ cm⁻¹ respectively. The fluorescence spectroscopic parameters of 1 are: Excitation wavelength = 372 nm, Emission wavelength = 424 nm (other peaks at 402 and 449 nm), Quantum yield (when 'ion-free') = 0.011%. The average uncertainty in β values is 15%. ^{*b*} Counter ion = Cl^{-.} ^{*c*} Counter ion = Me₄N^{+. d} Fluorescence response is too small to determine β . ^{*c*} [Guest] = 0.1 M. Solubility difficulties arise beyond this point in several cases.

well to GABA while its physiological precursor glutamic acid gives essentially no response. The binding of GABA by 1 is also seen by ¹H NMR spectroscopy [in CDCl₃-CD₃OD (3:2v/v) the multiplet for β -methylene protons of GABA shifts from δ 1.87 to 1.13 in the presence of 1 due to the paramagnetic shielding by the anthracene π -system]. The attenuation of the charge density of the ammonium unit by the α -carboxylate anion can contribute to the poor performance of glutamic acid. Glycine, which is also a neurotransmitter, elicits a poor response from 1, probably due to the above effect and also due to its inability to span the distance between the receptor units in 1. Thus, 1 shows interesting selectivity characteristics for GABA monitoring even at this early stage of its design. The excision of the guanidinium unit from 1 while preserving the electron density conditions at the azacrown nitrogen can be achieved in the model compound 3. 3 has a proton sensitivity of fluorescence (FE = 80, $pK_a = 7.0$) similar to 1. However, 3 yields no measurable fluorescence response to GABA. So 1 consists of the minimal set of components to result in useful GABA sensing according to the present approach. However, the significant fluorescence responses found with propyl ammonium, sodium $(FE = 0.7, \log \beta = 1.5)$ and potassium $(FE = 1.5, \log \beta = 3.3)$ ions need to be suppressed in higher generations of 1 by employing two PET-active receptors rather than one.¹² Also, the availability of newer receptors which bind GABA strongly and selectively in water¹³ will influence future sensor designs.

We thank the EPSRC, DENI, Queen's University and Irene Campbell for help and support.

Footnote

† ¹H NMR [CDCl₃/CD₃OD (5:1)] data for **1**. NO₃⁻: δ 7.50–8.54 (m, 8 H, ArH), 5.37 [s, 2 H, H₂NC(N⁺H₂)NHCH₂Ar], 4.50 [s, 2 H, H₂NC(N⁺H₂) CH₂ArCH₂], 3.54–3.76 (m, 20 H, OCH₂), 3.41 (t, 4 H, NCH₂). ¹³C NMR (Me₂SO-[²H₆]) for **1**. NO₃⁻: δ 156.5, 132.7, 130.6, 129.5, 126.6, 126.1, 125.4, 123.9, 70.0, 69.9, 69.8, 69.6, 69.4, 69.3, 69.0, 66.7, 53.1 and 51.1.

References

- A. Fernandez-Gutierrez and A. Munoz de la Pena, in Molecular Luminescence Spectroscopy: Methods and Applications Part 1, ed. S. G. Schulman, Wiley, New York, 1985, p. 371; Fluorescent Chemosensors for Ion and Molecule Recognition, ed. A. W. Czarnik, ACS Symp. Ser., 1993, vol. 528; B. Valeur, Probe Design and Chemical Sensing. Topics in Fluorescence Spectroscopy, ed. J. R. Lackowicz, Plenum, New York, 1994, vol. 4, p. 21; B. Valeur and E. Bardez, Chem. Brit., 1995, 31, 216.
- R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, *Chem. Soc. Rev.*, 1992, 21, 187; (b) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, C. P. McCoy and K. R. A. S. Sandanayake, *Top. Curr. Chem.*, 1993, 168, 223; (c) A. W. Czarnik, *Acc. Chem. Res.*, 1994, 27, 302.
- M. E. Huston, E. U. Akkaya and A. W. Czarnik, J. Am. Chem. Soc., 1989, 111, 8735; A. S. Verkman, Am. J. Physiol., 1990, 259, C375; D. H. Vance and A. W. Czarnik, J. Am. Chem. Soc., 1994, 116, 9397; P. D. Beer, Chem. Commun., 1996, 689.
- 4 A. Ueno, Adv. Mater., 1993, 5, 132; J. Yoon and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114, 5874; Y. Nagai, K. Kobayashi, H. Toi and

Y. Aoyama, Bull. Chem. Soc. Jpn., 1993, 66, 2965; T. D. James, P. Linnane and S. Shinkai, Chem. Commun., 1996, 281.

- 5 (a) F. Fages, J.-P. Desvergne, H. Bouas-Laurent, J.-M. Lehn, J. P. Konopelski, P. Marsau and Y. Barrans, J. Chem. Soc., Chem. Commun., 1990, 655; (b) A. P. de Silva and K. R. A. S. Sandanayake, Angew. Chem., Int. Ed. Engl., 1990, 29, 1173; (c) S. R. Adams, A. T. Harootunian, Y. J. Buechler, S. S. Taylor and R. Y. Tsien, Nature, 1991, 349, 694; (d) F. Fages, J.-P. Desvergne, K. Kampke, H. Bouas-Laurent, J.-M. Lehn, M. Meyer and A.-M. Albrecht-Gary, J. Am. Chem. Soc., 1993, 115, 3658; (e) M. Inouye, K. Hashimoto and K. Isagawa, J. Am. Chem. Soc., 1994, 116, 5517; (f) P. Cudic, M. Zinic, V. Tomisic, V. Simeon, J.-P. Vigneron and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1995, 1078; (g) DNA and dendrimer polyanions: N. J. Turro, J. K. Barton and D. A. Tomalia, Acc. Chem. Res., 1991, 24, 332; (h) V. W. Yam, K. K. Lo, K. Cheung and R. Y. Kong, J. Chem. Soc., Chem. Commun., 1995, 1191; (i) Heparin: S. A. Van Arman and A. W. Czarnik, J. Am. Chem. Soc. 1990, 112, 5376; (j) For non-fluorimetric sensing of 'onium ions', see: P. M. Kelly, R. Kataky, D. Parker and A. F. Patti, J. Chem. Soc., Perkin Trans. 2, 1995, 1955.
- 6 T. T. Goodnow, M. V. Reddington, J. F. Stoddart and A. E. Kaifer, J. Am. Chem. Soc., 1991, 113, 4335; J. Y. Yoon and A. W. Czarnik, Biorg. Med. Chem., 1993, 1, 267; L. Fabbrizzi, P. Pallavicini, L. Parodi, A. Perotti and A. Taglietti, J. Chem. Soc., Chem. Commun., 1995, 2439; describe optical sensors which target electron-rich π-systems, catechol units and imidazole units, respectively, within molecules which may additionally contain zwitterions.
- 7 Z. L. Kruk and C. J. Pycock, *Neurotransmitters and Drugs*, Chapman and Hall, London, 3rd edn., 1990; R. A. Nicoll, R. C. Malenka and J. A. Kauer, *Physiol. Rev.*, 1990, **70**, 513.
- 8 (a) I. O. Sutherland, Chem. Soc. Rev., 1986, 15, 63; (b) J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89.
- 9 Guanidinium-oxyanion binding: B. Dietrich, Pure Appl. Chem., 1993, 65, 1457; A. Galan, E. Pueyo, A. Salmeron and J. de Mendoza, Tetrahedron Lett., 1991, 32, 1827; J. Smith, K. Ariga and E. V. Anslyn, J. Am. Chem. Soc., 1993, 115, 362; E. Fan, S. A. Van Arman, S. Kincaid and A. D. Hamilton, J. Am. Chem. Soc., 1993, 115, 369; Y. Kato, M. M. Conn and J. Rebek, J. Am. Chem. Soc., 1994, 116, 3279; W. Peschke and F. P. Schmidtchen, Tetrahedron Lett., 1995, 36, 5155; A. Metzger, K. Gloe, H. Stephan and F. P. Schmidtchen, J. Org. Chem., 1996, 61, 2051.
- F. P. Schmidtchen, Tetrahedron Lett., 1984, 25, 4361;
 F. P. Schmidtchen, J. Org. Chem., 1986, 51, 5161. This system containing macrotricyclic quaternary ammonium and triaza-18-crown-6-ether units has not been used as an optical sensor. Other receptor assemblies which bind a pair of ions with opposite charges: E. Kimura, H. Fujioka and M. Kodama, J. Chem. Soc., Chem. Commun., 1986, 1158; E. A. Arafa, K. I. Kinnear and J. C. Lockhart, J. Chem. Soc., Chem. Commun., 1992, 61; D. M. Rudkevich, Z. Brzozka, M. Palys, H.C. Visser, W. Verboom and D. N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 1994, 33, 467; P. B. Savage, S. K. Holmgren and S. H. Gellman, J. Am. Chem. Soc., 1994, 116, 4069; P. D. Beer, Z. Chen and M. I. Ogden, J. Chem. Soc., Faraday Trans., 1995, 91, 295; J. Scheerder, J. P. M. van Duynhoven, J. F. J. Engbersen, D. N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 1996, 35, 1090.
- 11 K. Connors, Binding Constants: The Measurement of Molecular Complex Stability, Wiley, New York, 1987.
- 12 A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, *Nature*, 1993, 364, 42 describe a fluorescent system with two PET-active receptors which behaves as a photionic AND logic gate.
- 13 B. C. Askew, Tetrahedron Lett., 1990, 31, 4245.
- 14 K. S. D. Perera, Ph.D. Thesis, Queen's University, Belfast, 1989.
- 15 C. M. Kam, K. Fujikawa and J. C. Powers, *Biochemistry*, 1988, 27, 2547.

Received, 22nd July 1996; Com. 6/05075A