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A novel silyl-substituted solvent processable poly( 1,4-phe- 
nylenevinylene) (PPV) derivative, poly(2-dimethyloctylsilyl- 
1,4-phenylenevinylene) (DMOS-PPV) is synthesized by the 
dehydrohalogenation route from 2-dimethyloctylsilyl-1,4- 
bis(bromomethyl)benzene, and the light-emitting properties 
of the polymer are studied; single layer electroluminescent 
devices (ITO/polymer/Ca or Al) exhibit an emission max- 
imum at 520 nm with internal quantum efficiency in the 
range 0.243%. 

Light-emitting polymers have been extensively investigated in 
recent years since the Cambridge group first reported a green 
light-emitting diode (LED) using poly( 1,4-phenylenevinylene) 
(PPV) as an emitting layer.14 Organic polymer LEDs have 
many advantages for the development of a large-area visible 
light-emitting display, because of the good processability, low 
operation voltage, fast response time and colour tunability over 
the full visible range by control of the HOMO-LUMO bandgap 
of the emissive layer. PPV has been most widely used as the 
emissive layer for the light-emitting diodes, and has been 
prepared through a thermal elimination process from a water-5 
or organic-soluble precursor polymer.”* Several organic sol- 
vent soluble PPV derivatives have been developed in order to 
improve processability.9-11 Recently, Zhang et al. reported the 
improved quantum efficiency in green polymer light-emitting 
diodes with a silyl-substituted soluble PPV derivative, poly(2- 

PPV).lI They reported12 that CS-PPV showed high quantum 
efficiency with an air-stable aluminium electrode by adding an 
electron transporting molecular dopant, 2-(4-biphenyl)- 
5-(4-tert-butylphenyl)- 1,3,4-0xadiazole (PBD). 13314 

The effects of silicon substitution on the luminescence 
properties are of interest in the field of polymer LEDs, and here 
we report the synthesis of a new silyl-substituted soluble PPV 
derivative, poly(2-dimethyloctylsil yl- 174-phenylenevinylene) 
(DMOS-PPV). Single layer electroluminescent (EL) devices 
have been fabricated using this polymer as the emissive layer. 
The synthetic route is outlined in Scheme 1. Silylation of the 
Grignard reagent derived from 1 afforded the silyl derivative 2 
which after radical bromination gave the dibromo-compound 
3.1. Dehydrohalogenation condensation polymerization 
afforded DMOS-PPV 4.15916 

DMOS-PPV 4 is completely soluble in common organic 
solvents such as chloroform, tetrahydrofuran and toluene 
without evidence of gel formation. 

Fig. 1 shows the UV-VIS, photoluminescence (PL) and EL 
spectra of the DMOS-PPV film. DMOS-PPV 4 shows a slightly 
narrower absorption band compared with PPV. The absorption 
maximum and edge of the DMOS-PPV are at ca. 414 and 500 
nm, respectively, at room temperature. These positions are blue- 
shifted compared with those of the unsubstituted PPV (420 and 
530 nm, respectively), presumably owing to the steric effect of 
the bulky dimethyloctylsilyl group. 

cholestanoxy-5-thexylsilyl- 174-phenylenevinylene) (CS- 

DMOS-PPV 4 shows an emission maximum at ca. 520 nm 
which corresponds to the green region. The absolute photo- 
luminescence quantum efficiency for a solid film of DMOS- 
PPV was 60%. By comparison, the reported PL efficiencies of 
PPV and MEH-PPV are 27 and 15%, re~pective1y.l~ 

Fig. 2 shows the current density-electric field characteristics 
measured for a typical ITODMOS-PPV/Al device with film 
thickness of 700 A. The forward current density increases with 
increasing forward bias field and the curve shows typical diode 

Br 

r- 

\ 
F- 

Mg, THF * M e e M e  
M e e M e  C8HI7SiMe&I 

2 45% 1 

48% 

Si - 
KOBut,THF 6 * 

87% CH=CH 

3 4 
Scheme 1 

200 300 400 500 600 700 800 
A /  nm 

Fig. 1 UV-VIS (crosses), PL (open circles) of DMOS-PPV film and EL 
(solid circles) of the ITODMOS-PPV/A1 device 
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characteristics. The voltage dependence of emission intensity 
from the device shows that light emission becomes observable 
at a bias of about 15 V at a current density of 0.93 mA cm-2. 
The devices showed reproducible internal quantum efficiencies 
of 0.2% (ca. 0.05% external efficiency).$ 

Fig. 3 shows the current Gensity-field characteristics of an 
ITO/DMOS/Ca device (700 A thickness). The threshold voltage 
of the device was about 11 V at a current density of 1.8 
mA cm-2. The measured maximum internal quantum efficiency 
of the diode was 0.3% (ca. 0.1% external efficiency). These 
values compare favourably with the efficiency of the single 
layer green polymer LED reported by Son et aZ.8 

Recently we have fabricated multilayer EL devices with 
DMOS-PPV and various charge-transporting materials, such 
as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)- 1,3,4-0xadiazole 
(PBD) or poly(aromatic oxadiazo1e)s. These devices showed 
highly improved quantum efficiencies using an aluminium 
cathode. 

The DMOS-PPV film has good processability and the high 
quantum efficiency may make it a good candidate for 
application in polymer LEDs. 

0.35 

0.30 

0.25 

N 

E 0.20 
E 
E 0.75 

0.10 

0.05 

a 
'\ 

r 

- 

- 

- 

- 

- 

- 

0 
0 

0 

0 

2.0 

1 1.5 
E 
a 
E 
\ 1.0 
'Y 

0 5 10 15 20 
Voltage I V 

- 

- 

- 

a 

a 

a 

3 
CrJ 

=-. 
rn c 0 

. 

._ 

c - 
E 
E 

0 
a 

0 

0 

0 
0 

8 

I 
15 20 25 30 10 

0.00 
0 5 

10-5 E /  v cm-1 

Fig. 2 Current density-electric field and light intensity-voltage (inset) 
characteristics of ITO/DMOS-PPV/Al device 
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Fig. 3 Current density-electric field and light intensity-voltage (inset) 
characteristics of ITO/DMOS-PPV/Ca device 
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Footnotes 
t Selected spectroscopic data. 2, IH NMR (CDC13,200 MHz) 6 7.28 (1  H, 
s), 7.09 (2 H, s), 2.43 (3 H, s), 2.34 (3 H, s), 1.41-1.14 (12 H, m), 0.97-0.75 
(5  H, m), 0.33 (6 H, s); 3, 'H NMR (CDC13, 200 MHz) 6 7.48 (1 H, s), 7.43 
(2 H, s), 4.61 (2 H, s), 4.48 (2 H, s), 1.43-1.19 (12 H, m), 0.99-0.81 (5 H, 
m>, 0.42 (6 H, s); DMOS-PPV 4, GPC (polystyrene standard) showed a M ,  
of 1.1 x lo6 and polydispersity index of 7.2. (Found: C, 77.5; H, 10.05. 
Calc. C, 79.34; H, 10.36%). FTIR (NaC1) vmax/cm-I 2955, 2922, 2853, 
1729, 1468, 1377, 1251, 1137, 1066,961, 836. 
4 The internal efficiency is a factor of 2n2 larger than the external efficiency 
where n is the refractive index of the emissive layer.18 
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