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Symmetric 3,3'-attachment of a three-atom chain between 
two pyridones overrides the head-to-tail regioselectivity 
found in intermolecular photodimerization reactions and 
gives a nearly quantitative yield of the head-to-head [4 + 41 
cycloadduct containing contiguous quaternary centres. 

Photodimerization of 2-pyridones is an efficient [4 + 41 
cycloaddition reaction characterized by high regioselectivity 
and modest stereoselectivity.1.2 Despite more than thirty five 
years of study,3 only one example of a head-to-head product has 
been described. In that report, Nakamura found that head-to- 
head regioisomers 3 comprised 11% of the product mixture 
when the photoreactions were performed in water (Scheme l).' 
In other solvents, such as ethanol and benzene, only the head-to- 
tail products 2 were i~olated.~ 

In our studies of intramolecular [4 + 41 photocycloadditions2 
between 2-pyridones, the tether has been positioned to reinforce 
the natural head-to-tail regioselectivity (4, Fig. l),  and these 
molecules undergo cycloaddition in good to excellent yield.2d 
We report here the first example of symmetrically-tethered 
2-pyridones 5 ,  where intramolecular photocycloaddition can 
only occur with the unnatural head-to-head regiochemistry.5 

Preparation of photosubstrate 5 utilized the commercially 
available 2-hydroxynicotinic acid 6 (Scheme 2). This highly 
insoluble substrate was suspended in toluene and treated with 2 
equiv. of hexamethyldisilazane (HMDS) and a catalytic amount 
of chlorotrimethylsilane.6 Heating this mixture gave a homoge- 
neous solution containing the bis(trimethylsily1) derivative 7. 
This crude product was reduced with diisobutylaluminum 
hydride to give 3-hydroxymethyl-2-pyridone 8, which was 
subsequently N-methylated to give 9. Recrystallization of 9 
gave long (up to 10 cm) needles in 44% overall yield from 6. 
Treatment of alcohol 9 with thionyl chloride gave the 
chromatographically unstable chloromethyl derivative 10 
which was coupled immediately with another equivalent of 
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solvent: benzene 100 : 0 
ethanol 100 : 0 
water 89 : 11 

Scheme 1 Nakamura (ref. 1)  found head-to-head cycloadducts could be 
formed as a minor product, but only in aqueous solution 
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Fig. 1 Tether position enforces regioselectivity 

alcohol 9 under phase-transfer conditions7 to produce photo- 
substrate 5 in 85% yield.$ 

Irradiation of 5 was expected to result in a competition 
between two photochemical options: [4 + 41 cycloaddition and 
isomerization to Dewar pyridones (11 and 12 versus 13, Scheme 
3). Both of these pathways are observed in intermolecular cases, 
with dilute solutions favouring the unimolecular Dewar prod- 
uct.1,8,9 Intramolecular reactions do not suffer from concentra- 
tion effects per se, but the consequence of reversing the natural 
regioselectivity on the competition between these pathways was 
unknown. Photoreaction of 55 proved to be marginally slower 
than head-to-tail reaction of 4, and after 12 h bis(2-pyridone) 5 
was fully converted to two isomeric products in a ratio of 1 : 1 
(98% isolated yield). The [4 + 41 photocycloadditions of 
2-pyridones are normally trans selective and therefore we 
considered the possibility that the alternative photoproduct 13 
had formed. Photoisomerization of 5 to Dewar pyridones 13 
would be expected to yield a 1:  1 mixture through two 
independent photoisomerization events. Proton NMR spectra of 
11 and 12 would also be very similar to that of 13.1 
Nevertheless, the IR spectra$ of 11 and 12 ruled out the 
presence of p-lactams and confirmed that cycloaddition re- 
mained the exclusive path. 

Additional supporting evidence for structures 11 and 12, as 
well as identification of the cis isomer, was derived from 
heating a methanol solution of the mixture to reflux for 3 h 
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Scheme 2 Synthesis of photosubstrate 5. Reagents: i, HMDS; ii, DIBAL; iii, 
MeI, K2C03, MeOH; iv, SOCl2; 9, BnNEt3+C1-, 40% NaOH. 
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Scheme 3 Photocycloaddition of 5 gives exclusively [4 + 41 products 
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Scheme 4 The cis [4 + 41 isomer 12 and its Cope rearrangement product 14 
also shown with Chem3D structures 

(Scheme 4). Under these conditions the cis isomer underwent a 
quantitative Cope rearrangement to give 14, while the trans 
isomer 11 remained unchanged (97% combined isolated yield). 
This facile rearrangement of cis [4 + 41 products is also 
observed for the head-to-tail cis products771 and related 
molecules. 14 

This intramolecular head-to-head photocycloaddition pro- 
vides ready access to a novel carbocyclic framework from 
simple aromatic precursors. Studies of this and related systems 
are continuing. 
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$ All new compounds were fully characterized. Selected data for 9: mp 
83 "C; 'H NMR (CDC13) 6 7.29 (d, J 7 Hz, 1 H), 7.17 (d, J 7 Hz, 1 H), 6.12 
(t, J 7 Hz, 1 H), 4.55 (s, 2 H), 3.55 (s, 3 H); 13C NMR (CDC13) 6 162.7, 
136.9, 135.8, 131.6, 106.1, 62.1, 37.4; IR (neat) 1648 cm-1. For 5: mp 
152-153 "C; 'H NMR (CDC13) 6 7.56 (d, J 7 Hz, 2 H), 7.24 (d, J 7 Hz, 
2 H), 6.21 (t, J 7 Hz, 2 H), 4.58 (s, 4 H), 3.55 (s, 6 H); 13C NMR (CDC13) 
6 161.8, 136.7, 135.9, 129.6, 105.9, 68.1, 37.6; IR (KBr) 1654 cm-I. For 
11: mp 164-165 "C; 'H NMR (CDC13) 6 6.42 (m, 2 H), 6.13 (d, J 8.3 Hz, 
2 H), 4.61 (d,J9.0 Hz, 2 H), 3.66 (d, J9 .0  Hz, 2 H), 2.91 (s, 6 H); 13C NMR 
(CDC1-J 6 172.3, 137.5, 131.4,74.4,64.0,61.3,35.9; IR (KBr) 1651 cm-1. 
For 12: mp 134-135 "C; 1H NMR (CDC13) 6 6.56 (m, 2 H), 5.76 (d, J 8.1 
Hz, 2 H), 4.71 (d, J 9.3 Hz, 2 H), 3.58 (d, J 9.3 Hz, 2 H), 2.97 (s, 6 H); 13C 
NMR (CDC13) 6 172.7, 136.2, 134.9, 74.4, 66.5,62.3, 35.8; IR (KBr) 1662 
cm-I. For 14: mp 157-159 "C; 'H NMR (CDC13) 6 5.98 (d, J 8.1 Hz, 2 H), 
4.74(d,J9.1Hz,2H),4.33(d,J9.1,2H),3.95(d,J9.1Hz,2H),3.24(~, 

41.3, 34.9; IR (KBr) 1657 cm-1. 
2 H), 2.99 (s, 6 H); '3C NMR (CDC13) 6 164.9, 130.6, 102.4, 76.7, 59.7, 

8 A solution of 5 in methanol (0.05 M) in a Pyrex test tube was deoxygenated 
with a stream of nitrogen for 15 min and then irradiated with a 450 W 
medium pressure mercury lamp fitted with a Pyrex filter. Removal of the 
solvent gave a 1 : 1 mixture of 11 and 12 as the sole products (NMR). These 
were separated by flash chromatography using 1 : 9 methanol-dichloro- 
methane. 
1 Products of aromatic [4 + 41 photodimerization, and related molecules 
such as 11 and 12, contain new carbon-carbon bonds that are unusually long 
(ca. 1.6 A) (ref. lo), a feature usually attributed to strain from non-bonding 
interactions. In contrast to the well known and facile Cope rearrangements 
of cis- 1,2-divinylcyclobutanes to cycloocta-l,5-dienes (ref. 1 l), the thermo- 
dynamics are reversed for these types of systems. MM3* (ref. 12) 
calculations illustrate this with energies for 11, 12 and 14 calculated to be 
312, 316 and 247 kJ mol-I (74.7, 75.5 and 58.9 kcal mol-I), respectively. 
See refs. 13 and 14. 

References 
1 Y. Nakamura, T. Kato and Y. Morita, J .  Chem. Soc., Perkin Trans. 1 ,  

1982, 1187. 
2 ( a )  S. McN. Sieburth and J.4. Chen,J.Am. Chem. Soc., 1991,113,8163; 

(b)  S. McN. Sieburth and P. V. Joshi, J .  Org. Chem., 1993,58, 1661; (c )  
S. McN. Sieburth and K. Ravindran, Tetrahedron Lett., 1994,35,3861; 
(4 S. McN. Sieburth, G. Hiel, C.-H. Lin and D. P. Kuan, J. Org. Chem., 
1994, 59, 80. 

3 E. C. Taylor and W. W. Paudler, Tetrahedron Lett., 1960,25, 1. 
4 Head-to-head isomers have also been reported in photoreactions of 

2-pyridones in micelles: Y. Nakamura, T. Kato and Y. Morita, 
Tetrahedron Lett., 1981, 22, 1025. See also ref. 5. 

5 Symmetric N,N'-tethered bis(2-pyridone)~ have been reported to 
undergo photocycloaddition but these differ from other cases discussed 
as the reactions were run with photosensitizers: Y. Nakamura, 
J. Zsindely and H. Schmid, Helv. Chim. Acta, 1976, 59, 2841. 

6 H. D. H. Showalter and T. H. Haskell, J .  Heterocycl. Chem., 1981, 18, 
367. 

7 M. J. Palmer, J. C. Danilewicz and H. Vuong, Synlett, 1994, 171. 
8 E. J. Corey and J. Streith, J. Am. Chem. Soc., 1964, 86, 950. 
9 W. J. Begley, G. Lowe, A. K. Cheetham and J. M. Newsam, J .  Chem. 

Soc., Perkin Trans. I ,  198 1, 2620. 
10 X-ray structures of 2-pyridone photoproducts: M. Laing, Proc. Chem. 

Soc., London, 1964, 343; J. N. Brown, R. L. R. Towns and 
L. M. Trefonas, J .  Am. Chem. Soc., 1971,93, 7012; S. McN. Sieburth 
and C.-H. Lin, Tetrahedron Lett., 1996, 37, 1141 and refs. 2(a-c). 

11 E. Vogel, Liebigs Ann. Chem., 1958, 615, 1. 
12 Using the MM3 forcefield (ref. 15), as implemented in MACRO- 

MODEL, ver. 4.0; F. Mohamadi, N. G. J. Richards, W. C. Guida, 
R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and 
W. C. Still, J .  Comp. Chem., 1990, 11, 440. 

13 S. McN. Sieburth and C.-H. Lin, J.  Org. Chem., 1994, 59, 3597. 
14 N. C. Yang and J. Libman, J .  Am. Chem. Soc., 1972, 94, 9228; 

P. E. Eaton and U. R. Chakraborty, J. Am. Chem. Soc., 1978,100,3634; 
L. A. Paquette, C. W. Doecke and G. Klein, J .  Am. Chem. Soc., 1979, 
101, 7599; Y. Tobe, F. Hirata, K. Nishida, H. Fujita, K. Kimura and 
Y. Odaira, J .  Chem. Soc., Chem. Commun., 1981, 786. 

15 N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc., 1989,111, 
8551. 

Received, 14th June 1996; Corn. 6104193K 

2250 Chem. Commun., 1996 


