Oligonucleotides containing 7- or 8-methyl-7-deazaguanine: steric requirements of major groove substituents on the DNA structure

Frank Seela* and Yaoming Chen

Laboratorium fur Organische und Bioorganische Chemie, Institut fur Chemie, Universitat Osnabruck, Barbarastr. 7, 0-49069 Osnabruck, Germany

Methyl groups in alternating octanucleotides containing 7-methyl-7-deazaguanine and cytosine have steric freedom and maintain the B-DNA structure, whereas the isomeric 8-methyl-7-deazaguanine causes a B-Z transition.

DNA can exist in various conformations, *e.g.* **A-, B-** and **Z-DNA.** Model building shows that small 8-methyl groups located in the major groove of **B-DNA** can interfere with the sugar phosphate backbone of the **B-DNA** molecule. This causes steric strain in 8-methylated G-C-rich oligonucleotides, which is reduced by a transition from **B-** to **Z-DNA.l** Furthermore, bulky 8-substituents can change the purine base from *anti* to *syn,* the latter is adapted by Z-DNA.² Up to now it has not been known whether these steric restrictions are also valid for 7-methyl groups or whether the generation of a positive charge as introduced by the 7-methylation of guanine plays the main role in the **B-Z** transition of oligonucleotides with alternating dCdG. In order to investigate this matter the 7-deazaguanine skeleton was chosen as a substitute for the guanine base. The guanine and 7-deazaguanine heterocycles are isosteric and the latter stays uncharged if methylated at position 7, whereas the 7-methylguanine moiety carries a charge. The parent nucleoside, 7-deaza-2'-deoxyguanosine (c^7G_d), as well as the 7-methyl derivative **la,** have been synthesised previously.3,4 The 8-methyl derivative of c^7G_d is also available by convergent nucleoside synthesis.5 Studies on the structure of such oligonucleotides allow differentiation between steric effects of the 7-methyl *vs.* the 8-methyl group in the absence of a charged purine moiety.

In order to perform solid-phase oligonucleotide synthesis the building blocks **2a,b** and **3a,b,** as well as silica-bound **4b,** were prepared. Compounds **la,b** were blocked on the 2-amino group with an isobutyryl residue using the protocol of transient protection. The derivatives **5a,b** were obtained crystalline **(5a:** 89%; **5b:** 85%). Next, the **4,4'-dimethoxytriphenylmethyl** (DMT) group was introduced at the 5'-hydroxy position using the standard conditions which furnished compounds **6a,b (6a:** 90%, **6b:** 88%). These derivatives were converted into the phosphonates $2a,b$ $(PCl₃-N-methylmorpholine-1H-1,2,4-tri$ azole) and the phosphoramidites **3a,b** [chloro(2-cyanoethoxy)- **(diisopropylamino)phosphane]** . Succinylation of **6a** yielded the derivative **4a** (SO%), which was activated to the 4-nitrophenyl ester and linked to amino-functionalised Fractosil, forming the solid support **4b**. The ligand concentration was 70 μ mol g^{-1} silica. Solid-phase oligonucleotide synthesis was performed on an automated synthesiser. The octanucleotides shown in Table 1 were synthesised and then they were purified by OPC cartridges, and their base composition was confirmed by enzymatic hydrolysis.

From the melting curves of the oligonucleotides, the T_m values were determined and the thermodynamic parameters *AH* and ΔS calculated using shape analysis of the melting curve.⁷

Scheme 1 *Reagents:* **i,** Me3SiC1, BuIzO, **89%(5a)** or **85% (5b);** ii, 4,4' dimethoxytrityl chloride, **90% (6a)** or **88% (6b)**

Table 1 T_m Values, thermodynamic data and DNA structure of selfcomplementary oligonucleotides

Oligonucleotides	T_m /°C ^a	$\Delta H/$ kcal $mol-1$	ΔSI $mol-1$	DNA structure cal K^{-1} 0.1 and 4 M NaCl
$d(G-C)a$ 7	61	-82	-247	B-DNA
$d(c^7G-C)_4$ 8 ^b	53	-62	-190	B-DNA
$d(m^7c^7G-C)_4$ 9 ^b	58	-82	-250	B-DNA
$d(m8c7G-C)4$ 10	46	-70	-218	Z-DNA
$d(C-G)a$ 11	59	-84	-251	B/Z-DNA
$d(C-m7c7G)a$ 12	56	-81	-247	B-DNA

 a Oligonucleotide conc. is 10 μ m. Measurements were performed in 60 mm Na-cacodylate, 100 mm MgCl₂, 1 m NaCl, pH 7.0. b Ref. 6.

As it can be seen, the duplex $d(c^7G-C)₄$ 8 is less stable than that of $d(G-C)₄$ 7. This destabilisation was already recognised on shorter oligonucleotides⁸ as well as on polynucleotide duplexes having the same composition.⁹ The 7-methylated octanucleotide $d(m^7c^7G-C)_4$ 9 shows a significantly increased duplex stability over that of $d(c^7G-C)_4$ **8**, coming close to that of the parent purine oligonucleotide **7.** The same was found for $d(C-m^7c^7G)_4$ 12 compared to $d(C-G)_4$ 11. On the other hand, the duplex $d(m^8c^7G-C)_4$ 10 with an 8-methyl group is labile, even in comparison with $d(c^7G-C)_4$ 8. From these results it can be concluded that a methyl group located at the 8-position of 7-deazaguanine destabilises the DNA duplex, in a similar fashion to the 8-methyl group of guanine.¹ A methyl group located at the 7-position of 7-deazaguanine stabilises the duplex. As it can be seen from Table 1 the comparably low duplex stability of the oligonucleotides **8** and **10** is caused by an unfavourable enthalpy resulting from weaker H-bonding and/or stacking interactions. The 7-methylated oligomers **9** and **12** show about the same enthalpy and entropy changes as the corresponding purine oligonucleotides **7** and **11.**

Oligonucleotides containing alternating d(C-G) undergo a B-Z transition. This transition produces a dramatic change of the

Fig. 1 CD Spectra of the oligonucleotide duplexes 9 and 10 (10μ) in Nacacodylate (10 mm), $MgCl₂$ (10 mm) and NaCl (0.1 or 4 m), measured at 20 °C; (□) d(m⁷c⁷G-C)₄ in 0.1 M NaCl, (○) d(m⁷c⁷G-C)₄ in 4 M NaCl, (★) d(m^8c^7G-C)₄ in 0.1 M NaCl, (\triangle) d(m^8c^7G-C)₄ in 4 M NaCl

CD spectrum.¹⁰ As the shape of the CD spectra is diagnostic of a particular DNA structure, the CD spectra of the compounds **7-12** were measured. At low salt concentration the CD spectra of the oligomers **7-9** and **11-12** are similar. As those of **7** and **8** are in accordance with a B-like DNA structure, a structural change to Z-DNA is not observed when the 7-deazaguanine moiety carries a 7-methyl group. The oligonucleotide $d(C-G)₄$ **11** has a Z-DNA structure in 4 **M** NaCl similar to poly[d- (C-m⁷G)] under physiological conditions.¹¹ The oligomer 12 containing 7-methyl-7-deazaguanine maintains the B-DNA duplex form even at high salt concentration. As the charged 7-methylated guanine base facilitates the transition from B- to Z-DNA while the 7-methyl- 7-deazaguanine does not, it is suggested that the transition is caused by the charge and not by the spatial effect of the methyl group. The CD spectra of the oligomer **10** containing 8-methyl-7-deazaguanine residues are different from that of the $d(c^7G-C)_4$. Similar to the parent purine oligonucleotides, the 8-methyl substituent of 7-deazagaunine also forces the oligonucleotide from the B- to the Z-form (Fig. 1).

We thank Mr Changfu Wei for a generous gift of oligonucleotide d(G-C)4. Financial support by the Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) is gratefully acknowledged.

References

- 1 H. Sugiyama, K. Kawai, **A.** Matsunaga, **K.** Fujimoto, I. Saito, H. Robinson and **A.** H. J. Wang, *Nucleic Acids Res.,* 1996, 24, 1272.
- 2 A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Grawford, J. H. van Boom, G. van der Mare1 and **A.** Rich, *Nature (London),* 1979, 282, 680.
- 3 H. D. Winkeler and F. Seela, *J. Org. Chem.,* 1983, **48,** 31 19.
- 4 H. D. Winkeler and F. Seela, *Liebigs Ann. Chem.,* 1984, 708.
- 5 F. Seela and Y. Chen, unpublished data.
- **6** F. Seela, N. Ramzaeva and Y. Chen, *Bioorg. Med. Chem. Lett.,* 1995,5, 3049.
- 7 L. **A.** Marky and K. J. Breslauer, *Biopolymers,* 1987,26, 1601.
- 8 F. Seela and H. Driller, *Nucleic Acids Res.,* 1989, 17, 901.
- 9 L. J. P. Latimer and J. *S.* Lee, J. *Biol. Chem.,* 1991, 266, 13849.
- 10 F. M. Pohl and **T. M.** Jovin, J. *Mol. Biol.,* 1972, 67, 375.
- 11 A. Moller, A. Nordheim, **S.** R. Nichols and **A.** Rich, *Proc. Natl. Acud. Sci.* USA, 1981, 78,4777.

Received, 26th June 1996; Corn. 6104442E