Diplatinum(III) tetrakis(β-diketonato) complexes exemplifying the unsupported Pt-Pt bond

Paul D. Prenzler, Graham A. Heath,* Stefan B. Lee and Raphael G. Raptis

Australian National University, Canberra ACT 0200, Australia

Coupling of tervalent ClPt(acac)₂ moieties to form diamagnetic, directly Pt-Pt bonded [Pt₂Cl₂(acac)₄] occurs in the course of oxidative addition of Cl₂ to [Pt(acac)₂] [acac = R(CO)CH(CO)R' and R/R' = Me/Me, Me/CF₃ or Ph/Ph].

The most familiar Pt^{III} compounds are 'lantern dimers' spanned by bidentate sulfato, *etc.*, bridges, with the Pt–Pt distance varying between 2.4 and 2.8 Å, according to ligand constraint. However, a stable unsupported symmetric Pt^{III} dimer, [Pt₂Cl₂(C₈doH)₄] I where C₈doH = cyclooctane 1,2-dioxime, with Pt–Pt 2.6964(5) Å, was described recently,² after the independent discovery³ of a closely related, more reactive analogue bearing two chloride ligands and two monodentate imines in the equatorial plane [Pt–Pt 2.694(1) Å]. The exact cyclododecane analogue of I has also been characterised.⁴ We now report the extension of this previously unsuspected chemistry to common platinum β -diketonates.

Controlled Cl₂ addition† to a family of [Pt(acac)₂] complexes II, in chilled CH₂Cl₂ or CHCl₃ leads in certain cases (R/R' = Me/Me, Ph/Ph, Me/CF₃) to the elusive orange-red, diamagnetic intermediate [Pt₂Cl₂(acac)₄] III. Further oxidation yields *trans*-[PtCl₂(acac)₂] IV, as expected.⁵ At 290 K, solutions of III disproportionate efficiently to II and IV. These processes [eqn. (1) and (2)] are readily followed by ¹H or ¹⁹⁵Pt NMR. Dimeric III forms more rapidly than IV and is initially dominant in the reaction mixture. When isolated as an orange-red powder,‡ III is more stable than in solution, but is generally accompanied by II and/or IV.

$$\begin{array}{c|c}
CI & HO \\
N-|-N & N \\
N-|-N & N
\end{array}$$

$$\begin{array}{c|c}
HO & \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
CCH_2)_6$$

The constitution of III is established by: (a) direct observation of the molecular ion $[Pt_2Cl_2(acac)_4]\cdot M^+$ (where $M = H^+$, Na+), and abundant derived ions [Pt₂Cl(acac)₄]+ and [(MeCN)Pt₂Cl(acac)₄]+, by electrospray mass spectrometry of chilled CHCl3-MeCN solutions. Innocent mixtures of II and IV do not form a molecular aggregate comparable in abundance with III in the ESMS experiment.§ (b) A prominent Ramanactive band at 144 cm⁻¹ in fresh orange-red powders at 77 K, due to the characteristic Pt-Pt symmetric stretching vibration.² Neither II or IV have nearby bands. (c) Highly characteristic ¹⁹⁵Pt NMR and simple ¹H NMR spectra, with Pt, R/R' and C-H signals lying between those of II and IV. No ligand chlorination or Pt–C σ-bonding has occurred. (d) The instructive asymmetric CF₃/Me ligand system, where the mixed form of II (cis and trans isomers) leads to three NMR-distinguishable forms of III¶ (cis/cis, trans/trans, cis/trans) yielding in turn only two forms of IV (cis and trans). Pure cis or trans II gives the corresponding isomer of **III** which then yields exclusively cis or trans IV (and II); a lantern structure for III would invite scrambling reactions.

Ample evidence is presented above for the oxidative coupling of planar Pt(acac)₂ moieties which retain their identity in

Table 1 Selected NMR data for platinum-diketonate and -dioximate complexes in oxidation state II-IVa

Diketonate (R, R')	$\Sigma \text{ Taft}^h$ 2 (R + R')	PtL ₄ (II) ^c		${PtCIL_4}_2 (III)^d$		PtCl ₂ L ₄ (IV) ^c			
		δ_{Pt}	δ_{CH}	δ_{Pt}	δ _{CH}	δ_{Pt}	δ_{CH}	$\Delta\delta(II/III)$	$\Delta\delta(II/IV)$
But, But	-1.2	-471	5.75	undetected		1936	5.85		2407
Me, Me	0	-440	5.50	1296	5.50	1958	5.75	1736	2398
phen, phen	2.4	-329	6.86	1252	6.24	1940	6.93	1581	2269
Me, CF3ef	5.4	-216	6.00	13058	5.98	1925h	6.19	1521	2141
CF ₃ , CF ₃	10.8	23	6.48	undetected		1854	6.65		1831
Pt(C ₈ doH) ₂		-3371		-1694^{i}		-782		1677	2589
$Pt(C_{12}doH)_2$		-3401		-1746		-829		1655	2572

^a All ¹⁹⁵Pt chemical shifts referenced to PtCl₄²⁻ (δ -1630). ^b Ref. 9. Spectra recorded at 298 K. ^d Spectra recorded at 243 K. ^e Cis and trans. ^f Isomers not resolved except as stated. ^g Four resonances observed at 298 K: δ 1360, 1352, 1349, 1342. ^h δ 1924 and 1926 for the two isomers. ^f 298 K.

binuclear **III** and throughout the transformations of eqn. (1) and (2). Single crystals of **III** (Me/Me) have been grown, but so far their instability has prevented X-ray structural determination of the precise molecular geometry.

The formation of III parallels the analogous restricted chlorination of [Pt(C_8 doH)₂] to form red I,^{2,4} with markedly similar Pt–Pt stretch (139 cm⁻¹) and ¹⁹⁵Pt resonance properties (see Table 1). Accordingly, the Pt–Pt single bond length is expected to be close to 2.7 Å in the new systems as well. Mutual rotation of the planar moieties is permitted, in accord with geometry-optimised MO calculations⁶ where $\omega = 35^\circ$. This conforms with the isoelectronic {LRh^{II}(acac)₂}₂ system,⁷ where an unsupported Rh–Rh bond is observed [with Rh–Rh 2.590(1) Å and torsion angle 42°] despite the prevalence of lantern-type Rh^{II}₂ carboxylates.

The formation of **III** is associated with the growth of a characteristic absorption band near $24\,000$ cm⁻¹, dwarfing the weaker [Pt(acac)₂] ³MLCT feature (see Fig. 1). Upon further oxidation to **IV**, this near-UV band collapses again. The various indications of **III** [(a)–(c), above] disappear collectively as samples lose their red colour and the $24\,000$ cm⁻¹ band.

These compounds and their [Pt₂Cl₂(C_ndoH)₄] analogues provide an instructive comparison with previous studies^{1,8} restricted to strapped, structurally constrained Pt^{III} dimers, and a rare chance to survey ¹⁹⁵Pt NMR shifts in structurally related complexes spanning three oxidation states. A characteristic chemical shift difference of 1500–1700 ppm between Pt^{II} and Pt^{III} is observed, which is distinctly greater than that between Pt^{III} and Pt^{IV}.

Voltammetry in CH_2Cl_2 reveals the onset of irreversible oxidation of **II** near +1.2 V vs. Ag-AgCl, consistent with its capacity for reaction with Cl_2 . Accordingly, **III** (R/R' = Me/Me) can be generated (though accompanied by **IV**) by direct oxidation of **II** at a platinum electrode at +1.5 V in the presence of equimolar Cl^- . This is confirmed by detection of the 24 000 cm⁻¹ band in an optically transparent thin-layer electrolysis cell at 233 K.⁹ On electroreduction at -0.5 V, **III** rapidly gives way to **II**, and any **IV** present than follows suit (giving only **II**).

A faithful linear relationship is found between the ¹⁹⁵Pt chemical shift for **II**, which spans an exceptional 500 ppm, and the nett Taft¹⁰ inductive parameter (see Table 1), mirroring the immense tunability of isostructural [Pt(SacSac)₂] systems¹¹ and

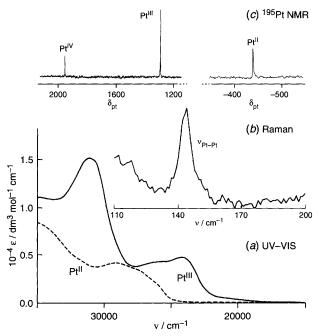


Fig. 1 (a) 243 K UV–VIS spectra of II and III in CHCl₃; (b) 77 K Raman spectrum of solid III; (c) 64.4 MHz ¹⁹⁵Pt NMR spectrum of II, III and IV in CDCl₃ (243 K)

of β -diketonates in general. Electron-deficient CF_3/CF_3 and bulky, electron-rich Bu^t/Bu^t forms of II both give IV as the only observed oxidation product, while the CF_3/Me and Ph/Ph forms of III are more persistent in solution than the Me/Me archetype. Alternative R/R' substitution may yet lead to robust analogues. Kinetic factors are clearly crucial, given that the diketonate-based Pt^{III} dimers so far detected all eventually undergo spontaneous disproportionation.

The nett strength of the eight Pt–O bonds on either side of eqn. (2) should be roughly equal, and so the thermodynamic stability of the binuclear intermediate entails a trade-off between the formation of the Pt–Pt bond in **III** and the increased stability of two Pt^{IV}–Cl bonds over their Pt^{III}–Cl counterparts. This may explain the failure to observe bromo-capped dimers in this work and in the dioximato systems.² Equally, replacement of Cl⁻ by MeCN might stabilise **III** against disproportionation, echoing the ESMS observations. The present enquiry suggests that discrete Pt–Pt bonded intermediates might play an important role in other apparently simple Pt^{II}/Cl₂ oxidative-addition reactions, particularly where transient red colours are noted.¹²

We thank Dr Greg Kilby for ES mass spectra, Dr Lynne Wallace for the Raman spectra, and Professor Alan Sargeson for valued discussions.

Footnotes

† Crystalline ClC_6H_4I - Cl_2 is a convenient source of Cl_2 . In a typical NMR experiment, 20 mg of II (R/R = Me/Me) in 0.5 ml $CDCl_3$ was cooled to 243 K in a capped 5 mm NMR tube, and ClC_6H_4I - Cl_2 (8 mg) was added. The tube was promptly immersed in crushed solid CO_2 to freeze the solvent then transferred to the pre-cooled (243 K) probe. The 1H and ^{195}Pt NMR spectra were recorded once the solvent had thawed. The same transformations were observed with Cl_2 (g) as oxidant.

‡ Analysis (C, H, Cl) of the orange–red solids gave values consistent with III (except when contaminated with excess of relatively insoluble IV), but this is inconclusive, given the ease of disproportionation to equimolar II and IV.

 \S Solutions of III (50:50 CHCl₃–MeCN; 1% HCO₂H) give peaks for these dinuclear species at 40% of the [Pt(acac)₂]·H+ base peak (B1 = 35–75 V), while mixtures of II and IV show oligomer peaks at the 1% level only. We are exploring whether these represent weaker aggregates or true analogues of III formed under ESMS ionisation.

¶ At 298 K separate 195 Pt NMR signals were found for the cis/cis*, trans/trans*, cis*/trans and cis/trans* isotopomers (* = 195 Pt, 33% natural abundance). The statistically unfavoured cis*/trans* isotopomer [from which, in principle, J(Pt-Pt) could be measured directly] has not been detected so far.

References

- 1 K. Umakoshi and Y. Sasaki, Adv. Inorg. Chem., 1994, 40, 187.
- 2 L. A. M. Baxter, G. A. Heath, R. G. Raptis and A. C. Willis, J. Am. Chem. Soc., 1992, 114, 6944.
- 3 R. Cini, F. P. Fanizzi, F. P. Intini and G. Natile, *J. Am. Chem. Soc.*, 1991, **113**, 7805.
- 4 R. L. Paul, PhD Thesis, Australian National University, 1996. For [Pt₂Cl₂(C₁₂doH)₄], Pt–Pt 2.708(1) Å.
- 5 A. Grabowski and W. Preetz, Z. Anorg. Allg. Chem., 1987, 544, 95.
- 6 G. A. Heath, S. A. MacGregor, P. D. Prenzler and M. Skidmore, unpublished work.
- 7 L. M. Dikareva, V. I. Andrianov, A. N. Zhilyaev and I. B. Baranovskii, *Russ. J. Inorg. Chem.*, 1989, **34**, 391.
- 8 T. G. Appleton, J. R. Hall and D. W. Neale, *Inorg. Chim. Acta*, 1985, **104**, 19.
- 9 C. M. Duff and G. A. Heath, J. Chem. Soc., Dalton Trans., 1991, 2401.
- 10 R. W. Taft, Steric Effects in Organic Chemistry, Wiley, New York, 1956.
- 11 G. A. Heath and J. H. Leslie, J. Chem. Soc., Dalton Trans., 1983, 1587.
- F. Basolo, J. C. Bailar, Jr. and B. R. Tarr, J. Am. Chem. Soc., 1950, 72, 2433; G. B. Kauffman, Inorg. Synth., 1963, 7, 236.

Received, 2nd July 1996; Com. 6/04587A