X-Ray characterization of enantiomerically pure 1,1'-diphenyl-3,3',4,4'-tetramethyl-2,2'-biphosphole: a ligand with axial and central chirality

Olivier Tissot, Maryse Gouygou,* Jean-Claude Daran and Gilbert G. A. Balavoine*

Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, F-31077 Toulouse Cedex, France

The stereochemical analysis and characterization of diastereoisomers of 1,1'-diphenyl-3,3',4,4'-tetramethyl-2,2'-biphosphole having axial and central chirality reveal the potential interest of this ligand for asymmetric catalysis.

 C_2 -symmetric bidentate ligands with axial chirality, such as binap, are powerful chiral auxiliaries in catalytic asymmetric induction processes. 1 Mathey and coworkers 2 reported the first synthesis of 2,2'-biphospholes and their complexation to transition metals. Puzzled with the possible combination of axial chirality of the 2,2'-biphospholes and central chirality of the phosphorus atoms in these systems, we decided to explore their potential interest as ligands for asymmetric catalysis. We report here the stereochemical analysis, the structural characterization of the diastereoisomers and preliminary results concerning the use of 2,2'-biphosphole 1 in palladium complexes as catalysts. Using the procedure previously described by Mathey and coworkers, we obtained the biphosphole 1 which we identified as a mixture of two isomers, 1a, b in the ratio 88:12. Treatment of this mixture with sulfur in dichloromethane at 40 °C gave a mixture of 2a, b in the same ratio 88:12 (Scheme 1). We were able to separate $\mathbf{2a}$ (δ_P 50.75) and **b** (δ_P 51.37) by column chromatography and they have been characterized by ¹H, ³¹P NMR spectroscopy, mass spectrometry and single-crystal X-ray diffraction (Fig. 1, 2). In both compounds, the dihedral angle between the two phosphole rings (93.7° in 2a and 99.4° in 2b) generates an axial chirality. Both phosphorus atoms have the same absolute configurations [(R,R)]or (S,S)] in the major isomer 2a and opposite absolute

Scheme 1 Reagents and conditions: i, CF₃SO₃Me, CH₂Cl₂, 25 °C; ii, Bu'SLi -70 °C, Et₂O-CH₂Cl₂

configurations (R,S) in the minor compound **2b**. Since the sulfur addition to trivalent phosphorus compounds proceeds with retention of configuration,3 these results suggest that biphosphole 1 exists also as a mixture of corresponding diastereoisomers. In order to isolate the two diastereoisomers 1a, b we investigated a method reported by Mikolajczyk4 to desulfurate stereospecifically 2a, b. Compound 2a was reacted with methyltrifluoromethane sulfonate to give compound 3a (δ_P 52.95) in quantitative yield. Following the reaction of 3a with tert-butyllithium sulfide by ^{31}P NMR, we observed at -70 °C the quantitative formation of 1a. At -50 °C, the isomerisation proceeded giving a mixture of 1a and b in a 98:2 ratio, rising to 88:12 at 25 °C. Similarly, **2b** was transformed into **3b** (δ_P 54.27), then 1b was obtained as the main product at -70 °C (81%), with a small amount of 1a (19%) (Scheme 1). Upon increasing the temperature to 25 °C the ratio 1a: b of 88: 12 was again obtained. The determination of kinetic parameters was

Fig. 1 Molecular structure of 2a (thermal ellipsoids at 30%)

Fig. 2 Molecular structure of 2b (thermal ellipsoids at 30%)

Scheme 2 Projection is along the C-C axis; superscript refers to axial chirality, subscript refers to central chirality

Fig. 3 Molecular structure of 1a (thermal ellipsoids at 30%)

carried out by 31P NMR in the temperature range of -60 to -50 °C in which the isomerisation process $1b \rightarrow 1a$ is slow on the NMR timescale. It is a first-order reaction with $\triangle H^{\ddagger} = 63.48 \text{ kJ mol}^{-1} \text{ and } \triangle S^{\ddagger} = -25 \text{ J mol}^{-1} \text{ K}^{-1}$ evaluated from plotting $\log k/T vs. 1/T$ (correlation coefficient 0.999) The free enthalpy of activation ($\triangle G^{\ddagger}$ 218 = 68.9 kJ $\triangle G_{298}^{\ddagger} \text{ mol}^{-1}$) can be compared to the pyramidal inversion barrier of phosphorus observed for the monophosphole series $(ca. 66.88 \text{ kJ mol}^{-1}).5 \text{ Between } -50 \text{ and } +30 \,^{\circ}\text{C}, \text{ the ratio } 1a:b$ is still temperature dependent but the equilibrium mixture is rapidly obtained. These results indicate that even with a low pyramidal inversion barrier, biphosphole 1 exists in solution as a mixture of two diastereoisomers, the energetically preferred isomer being 1a. Crystals of 1a suitable for X-ray analysis (Fig. 3) were obtained by slow evaporation from a dichloromethane solution and belong to the chiral non-centrosymmetric space group P2₁. Structural data of 1a are in good agreement with related published structures.⁶ The phosphorus atoms in 1a retains a pyramidal geometry $\Sigma(CPC \text{ angles}) = 301.6^{\circ}$ inducing a central chirality. The dihedral angle between the two phosphole rings (46.63°), much lower than in compounds 2a and b, generates an axial chirality. In the crystal examined, obtained by spontaneous resolution, the (R,R) central chirality is associated with the (S) axial chirality of the biphosphole. Surprisingly in 2a, the (R,R) phosphorus stereochemistry is associated with the (R) axial chirality. The different possibilities of combining axial and central chiralities are represented in Scheme 2. In the isomers ($[1a]^{S}_{RR} + [1a]^{R}_{SS}$), the phosphorus

lone pairs are in the right direction to coordinate to metal atoms. Starting with the mixture of the racemic biphospholes 1a,b (88:12), several metal complexes have been quantitatively obtained and fully characterized.7 Once coordinated to the metal, the stereochemistry of the biphosphole ligands is stable $([1a]^{S}_{RR}, [1a]^{R}_{SS})$ and some of these complexes are shown to be effective catalysts. For example, the palladium complex generated from $[\{Pd(\eta_3-C_3H_5)Cl\}_2]$ and a slight excess of biphosphole 1 was used in catalytic allylic substitution of 1,3-diphenylprop-2-enylacetate with the anion of the dimethyl malonate. The 2,2'-biphosphole palladium complex proved to be as effective as the best reported catalytic systems for this reaction.8 At 35 °C in dichloromethane, working on a 2 mmol scale and using 0.02 equiv. of catalyst, the formation of PhCH=CHCHPhCH(CO₂Me)₂ is quantitative (99%) in 10 min. We are presently investigating the optical resolution of these chiral biphosphole metal complexes in order to explore their performance in asymmetric catalysis.

We acknowledge the CNRS for financial support, G. Commenges for NMR spectra and helpful discussions and H. Aït-Haddou and O. Hoarau for catalytic tests.

Footnote

† Crystal data: **2a**. $C_{24}H_{24}P_2S_2$, M=438.6, monoclinic, space group C2/c, a=9.525(1), b=17.491(1), c=14.236(2) Å, $\beta=109.36(1)^\circ$, U=2237.6(1) Å³, Z=4. R=0.0395, $R_w=0.0456$.

2b. $C_{24}H_{24}P_{2}S_{2}$, M=438.6, orthorhombic, space group Pcab, a=14.642(3), b=17.578(4), c=17.737(2) Å, U=4566(2) Å³, Z=8. R=0.0391, $R_{w}=0.0478$.

1a. $C_{24}H_{24}P_2$, M=374.4, monoclinic, space group $P2_1$, a=8.529(1), b=15.120(2), c=8.728(1) Å, $\beta=110.21(1)^\circ$, U=1055.9(3) Å 3 , Z=2. R=0.0404, $R_w=0.0475$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/205.

References

- 1 Asymmetric Catalysis in Organic Synthesis, ed. R. Noyori, Wiley, New York, 1994.
- 2 F. Mercier, S. Holand and F. Mathey, J. Organomet. Chem., 1986, 316, 271; E. Deschamps and F. Mathey, Bull. Soc. Chim. Fr., 1992, 129.
- 3 W. E. McEven, Top. Phosphorus Chem., 1965, 2, 1; M. J. Gallaher and J. D. Jenkins, Top. Stereochem., 1969, 3, 1.
- 4 J. Omelanczuk and M. Mikolajczyk, J. Am. Chem. Soc., 1979, 101, 7292; J. Omelanczuk, W. Perlikowska and M. Mikolajczyk, J. Chem. Soc., Chem. Commun., 1980, 24.
- 5 W. Egan, R. Tang, G. Zon and K. Mislow, J. Am. Chem. Soc., 1971, 93, 6205.
- 6 P. Coggon and A. T. McPhail, J. Chem. Soc., Dalton Trans., 1973, 1888; E. Deschamps, L. Ricard and F. Mathey, Angew. Chem., Int. Ed. Engl., 1994, 33, 1158.
- 7 Presented at CONCOORD-GEOCOM, May 19th–23rd 1996, Aspet, France; M. Gouygou, O. Tissot, J-C. Daran and G. G. A. Balavoine, manuscript in preparation.
- 8 B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96, 395.

Received, 10th June 1996; Com. 6/04083G