A diruthenium(II) complex containing an unprecedented bridging S,O-bidentate dimethyl sulfoxide ligand

Tomoaki Tanase,*† Tsuyoshi Aiko and Yasuhiro Yamamoto*

Department of Chemistry, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan

The diruthenium(II) complex $[Ru_2(\mu-Cl)(\mu-H)(\mu-Me_2SO)-Cl_2(Me_2SO)_4]$ ·2CH₂Cl₂ is prepared from $[RuCl_2(Me_2SO)_4]$ in methanol in the presence of Na₂(xdk) $[H_2xdk = m$ -xylenediamine bis(Kemp's triacid imide)] and characterized by X-ray crystallography which reveals an unprecedented S,O-bidentate bridging Me₂SO ligand.

A variety of transition-metal complexes with dimethyl sulfoxide are useful starting materials for many inorganic and organometallic compounds.¹ Me₂SO can coordinate through both S and O donor atoms in a monodentate fashion, and can also (rarely) bridge two metal atoms *via* O.² Although the S,Obidentate bridging mode of Me₂SO has been considered as viable,³ structurally characterized examples have not, as yet, been reported. Here we report the synthesis and characterization of a diruthenium(II) complex, [Ru₂(μ -Cl)(μ -H)(μ -Me₂SO)Cl-₂(Me₂SO)₄]·2CH₂Cl₂ **2**, which contains an unprecedented η^1,η^1 -S,O bridging Me₂SO ligand.

Reaction of $[\tilde{R}uCl_2(Me_2SO)_4]$ 1^{4.5} with Na₂(xdk)·4H₂O [H₂xdk = *m*-xylenediamine bis(Kemp's triacid imide)]⁶ in refluxing methanol for 2 h gave a solution which was evaporated to dryness. The residue was recrystallized from CH₂Cl₂-Et₂O to give orange crystals of [Ru₂(μ -Cl)(μ -H)(μ -Me₂SO)Cl₂(Me₂SO)₄]·2CH₂Cl₂ (2·2CH₂Cl₂) in 11% yield. Complex 2 is air-stable both in the solid state and in solution.

Fig. 1 ORTEP diagram of complex 2 with thermal ellipsoids drawn at the 50% probability level. Selected bond distances (Å) and angles (°); Ru(1)–Ru(2) 2.8435(7), Ru(1)–Cl(3) 2.406(2), Ru(1)–S(1) 2.232(2), Ru(1)–S(2) 2.263(2), Ru(1)–Cl(3) 2.410(2), Ru(2)–Cl(1) 2.160(4), Ru(2)–Cl(2) 2.431(2), Ru(2)–Cl(3) 2.412(2), Ru(2)–Cl(4) 2.188(2), Ru(2)–S(5) 2.223(2), S(1)–O(11) 1.485(4), S(2)–O(21) 1.481(4), S(3)–O(31) 1.442(5), S(4)–O(41) 1.532(4), S(5)–O(51) 1.486(4), Cl(3)–Ru(1)–S(1) 96.50(6), Cl(3)–Ru(1)–S(2) 167.71(6), Cl(3)–Ru(1)–S(3) 94.38(6), Cl(3)–Ru(1)–O(41) 83.4(1), S(1)–Ru(1)–S(2) 90.96(6), S(1)–Ru(1)–S(3) 96.03(6), S(1)–Ru(1)–O(41) 178.5(1), S(2)–Ru(1)–S(3) 94.54(6), S(2)–Ru(1)–O(41) 88.9(1), S(3)–Ru(1)–O(41) 85.5(1), Cl(1)–Ru(2)–Cl(2) 88.67(5), Cl(1)–Ru(2)–Cl(3) 94.69(6), Cl(1)–Ru(2)–S(4) 93.16(5), Cl(1)–Ru(2)–S(5) 92.79(6), Cl(2)–Ru(2)–Cl(3) 88.22(6), Cl(2)–Ru(2)–S(4) 83.39(6), Cl(3)–Ru(2)–S(5) 172.07(6), S(4)–Ru(2)–S(5) 98.84(5).

Although the resultant product does not contain the dinucleating ligand xdk, use of $Na_2(xdk)$ ·4H₂O was indispensable in the formation of **2**; presumably it mediates in a dinucleating process. A similar reaction of **1** with NaO₂CMe failed to produce complex **2**.

A perspective drawing of complex 2 is illustrated in Fig. 1.§ The complex consists of two octahedral ruthenium atoms bridged by hydride, chloride and Me₂SO. The triply bridged diruthenium structure is similar to that found in $[Ru_2(\mu-Cl)(\mu-$ H)(μ -NH₂NMe₂)(H)Cl(cod)₂] **3** (cod = cycloocta-1,5-diene).⁹ The Ru–Ru distance is 2.8435(7) Å indicating the presence of a metal-metal single bond as observed in the hydride-bridged diruthenium(II) complexes, 3 [2.91(1) Å], [Ru₂(μ -Cl)(μ -H)(μ -NHCOCF₃)₂(PPh₃)₄] [2.811(4) Å], ¹⁰ [Ru₂(μ -Cl)(μ -H)(μ -C₄H₄NO₂)₂(PPh₃)₄] [2.827(4) Å]¹¹ and [{(η -C₅H₅)Fe[η -C₅H₃(CHMeNMe₂)PPrⁱ₂-1,2]}(η ²-H₂)Ru(μ -Cl)₂(μ -H)Ru(H)- $(PPh_3)_2$ [2.811(2) Å].¹² The hydride ligand position was determined by difference Fourier synthesis and found to almost symmetrically bridge the two ruthenium atoms [Ru(1)-H(1) 1.85(1), Ru(2)-H(1) 1.78(1) Å, Ru(1)-H(1)-Ru(2) 103(1)°]. The other terminal coordination sites of the $Ru_2(\mu-H)(\mu-Cl)(\mu-C$ Me₂SO) core are ligated by four S-bound Me₂SO molecules and two Cl.

The most conspicuous feature is the S,O-bridging Me₂SO ligand coordinating to one ruthenium *via* S [Ru(2)–S(4) 2.188(2) Å] and to the other *via* O [Ru(1)–O(41) 2.160(2) Å], resulting in a four-membered ring [Ru(1)Ru(2)S(4)O(41)] [Ru(1)–Ru(2)–S(4) 71.35(4), Ru(2)–Ru(1)–O(41) 83.4(1)°]. The Ru(2)–S(4) bond length is significantly shorter than those of other terminal Me₂SO ligands (Ru–S 2.223–2.313 Å), resulting in an elongation of the S(4)–O(41) distance to 1.532(4) Å. It should be noted that the S–O bond length of the Me₂SO ligands in **2** is linearly correlated to the Ru–S bond length as shown in Fig. 2. Complex **2** is the first example containing a *syn*-type η^1 , η^1 -S,O-bridge of Me₂SO over a dinuclear transi-

Fig. 2 Plot of S–O bond length (Å) of Me₂SO vs. Ru–S distance (Å). A linear correlation with r = 0.95 is observed.

Chem. Commun., 1996 2341

tion-metal centre (on the basis of Cambridge Structure Database analysis). The present structural data significantly extend the coordination chemistry of Me_2SO .

This work is partially supported by a Grant-in-Aid from the Ministry of Education of Japan.

Footnotes

† Present address: Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630, Japan.

 \ddagger Complex 2 was obtained as orange needles with a small amount of Na₂(xdk) as impurity. Optimization of the synthetic procedure is being attempted which will be reported in due course. IR (Nujol): 1717, 1308, 1093, 1017, 966, 721, 677, 422 cm⁻¹. ¹H NMR (CDCl₃): δ 3.37 (s, 6 H, Me), 3.43 (s, 6 H, Me), 3.46 (s, 6 H, Me), 3.47 (s, 6 H, Me), 3.49 (s, 3 H, Me), 3.50 (s, 3 H, Me), -9.42 (s, μ -H).

§ The structure of 2·2CH₂Cl₂ was determined by an X-ray crystallographic analysis. *Crystal data*: C₁₂H₃₅Cl₇O₅Ru₂S₅, triclinic, space group $P\overline{1}$ (no. 2), a = 12.108(3), b = 14.467(5), c = 9.885(3) Å, $\alpha = 110.01(3), \beta = 94.49(2), \gamma = 69.23(2)^\circ, U = 1519.4(9)$ Å³, $Z = 2, D_c = 1.902$ g cm⁻³, T = -100 °C, $R = 0.031, R_w = 0.035$ [$w = 1/\sigma^2(F_o)$] for 4483 independent reflections [$I > 3\sigma(I)$] with 421 variables. The structure was solved by direct methods using SIR92⁷ and refined by full-matrix least-squares techniques using the teXsan program package.⁸

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/223.

References

- 1 W. L. Reynolds, Prog. Inorg. Chem., 1970, 12, 1.
- P. Biscarini, L. Fusina, G. D. Nivellini, A. Mangia and G. Pelizzi, J. Chem. Soc., Dalton Trans., 1974, 1846.
- 3 G. A. Heath, A. J. Lindsay and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1982, 2429.
- 4 I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 206.
- 5 E. Alessio, G. Balducci, M. Calligaris, G. Costa, W. M. Attia and G. Mestroni, *Inorg. Chem.*, 1991, **30**, 609.
- 6 T. Tanase and S. J. Lippard, Inorg. Chem., 1995, 34, 4682.
- 7 M. C. Burla, M. Camalii, C. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389.
- 8 TEXSAN structure analysis package, Molecular Structure Corp., The Woodlands, TX, 1985.

Received, 22nd July 1996; Com. 5/05087E