Nickel(0)-catalysed alkyne–dimaleimide double-cycloaddition copolymerisation to form poly(imide)s

Tetsuo Tsuda,*a Masaki Shimada^b and Haruna Mizuno^b

^a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan ^b Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

A nickel(0) catalyst effects the double-cycloaddition copolymerisation of alkynes with dimaleimides to form poly-(imide)s.

The development of a new method of polymer synthesis utilising a transition metal catalyst's characteristic organic reaction has attracted recent attention.¹ Here we report a new type of transition metal-catalysed polymer synthesis, *i.e.* a nickel(0)-catalysed alkyne–dimaleimide double-cycloaddition copolymerisation to form a poly(imide) [eqn. (1)]. This alkyne–

dimaleimide copolymerisation is characterised by a unique and complex process in which two alkyne molecules connect two dimaleimide molecules by double-cycloaddition to generate a copolymer repeat unit containing a bicyclo[2.2.2]oct-7-ene ring *via* a nickel(0)-catalysed formation of a cyclohexadiene intermediate and its subsequent Diels–Alder cycloaddition with the dimaleimide [eqn. (2)]. This alkyne–dimaleimide copoly-

merisation is based on our recent study of an efficient and chemoselective nickel(0)-catalysed 2:2 alkyne-maleimide cycloaddition to afford an *exo*,*exo*-bicyclo[2.2.2]oct-7-ene derivative [eqn. (3)],^{2a} which is a noteworthy reaction because

efficient transition metal-catalysed [2 + 2 + 2] alkyne–alkene cycloaddition reactions are few.³ The present nickel(0)-catalysed alkyne–dimaleimide double-cycloaddition copolymerisation is a new method of poly(imide) synthesis and accordingly affords a variety of new poly(imide)s by various combinations of alkynes and dimaleimides.

The results of the copolymerisation are summarised in Table 1. The reaction was carried out in a 50 ml stainless steel autoclave under nitrogen. When a mixture of dec-1-yne **1a** (1 mmol) and N,N'-1,1'-(4,4'-methylenediphenylene)dimaleimide**2a**(0.5 mmol) was heated at 90 °C for 20 h in dioxane (10 ml) in the presence of a nickel(0) catalyst generated from Ni(cod)₂ (Ni : alkyne = 0.05) and 2 equiv. of PPh₃, poly(imide)**3aa** $with <math>M_n = 8500$ and $M_w/M_n = 1.9^{\dagger}$ was obtained in 68% yield by concentration of the resulting reaction mixture under vacuum and precipitation with methylene chloride–diethyl ether. Compound **3aa** consisted of a white powder which was soluble in methylene chloride, chloroform and THF, partly soluble in benzene, but insoluble in diethyl ether and methanol.

Dimaleimide **2a** also copolymerised with tetradec-7-yne **1b**, but its copolymerisation with phenylacetylene **1c** and pent-1-yne or hex-3-yne produced totally and partly insoluble copolymers, respectively. These results indicate that the introduction of a relatively long alkyl group such as an octyl group or two hexyl groups into the alkyne is necessary for the preparation of a soluble poly(imide) from **2a**.⁴ Thus the nickel(0)-catalysed copolymerisations of **1a** and **1b** with various dimaleimides such as $N_iN'-1_11'-(4,4'-oxydiphenylene)$ -

Table 1Nickel(0)-catalysed alkyne 1-dimaleimide 2double-cycloadditioncopolymerisation to form poly(imide)s 3[eqn. (1)] $^{\alpha}$

1			3		
	2		Yield (%) ^b	$M_{\rm n}^{c}$	$M_{\rm w}/M_{\rm n}^{\rm c}$
а	а	aa	68	8500	1.9
b	а	ba	4 9 ^d	12100	2.2
с	b	cb	33	4500	1.9
а	b	ab	53	15 000	1.4
d	b	db	69 ^e	5400	2.7
е	b	eb	41	5000	1.7
а	с	ac	92	7400	2.3
а	d	ad	71	8800	1.7
b	d	bd	23 ^d	7700	1.8
a	e	ae	91	8300	1.9

^{*a*} **1** = 1 mmol; **1**: **2** = 2; Ni(cod)₂-2PPh₃: **1** = 0.05; 1,4-dioxane (10 ml); 90 °C; 20 h. ^{*b*} Based on the quantitative formation of **3**. ^{*c*} Determined by GPC with polystyrene standards in CHCl₃. ^{*d*} 150 °C. ^{*e*} 1d = 0.5 mmol; 1d: 2b = 1.

Chem. Commun., 1996 2371

dimaleimide 2c, N,N'-1,4-phenylenedimaleimide 2d and N,N'-1,3-phenylenedimaleimide 2e afforded soluble poly(imide)s 3ac, 3ad, 3ae and 3bd with $M_n = 7000-9000$.

The introduction of a relatively long alkylene group connecting two maleimide moieties into the dimaleimide was also effective in the preparation of a soluble poly(imide). N,N'-1,6-Hexylenedimaleimide **2b** was found to be a versatile dimaleimide component and copolymerised with **1c** to form soluble poly(imide) **3cb** while the **1c-2a** and **1c-2d** copolymerisations produced insoluble copolymers. The **1a-2b** copolymerisation afforded poly(imide) **3ab** with $M_n = 15000$ and $M_w/M_n = 1.4$.

The structures of poly(imide)s **3** were determined by IR, ¹H and ¹³C NMR spectroscopy. Comparison of the ¹³C NMR C=O and C=C (a vinylene-type bridge of a bicyclic ring) signals between a poly(imide) and a model compound of a poly(imide) repeat unit was most decisive. Two regioisomeric model compounds **A** and **B** (**A** : **B** = 1.1) were obtained quantitatively with an *exo,exo*-stereoselectivity by the nickel(0)-catalysed

Fig. 1 13 C NMR (CDCl₃) C=O and C=C signals of poly(imide)s **3ab** and **3ad** together with model compounds **A** and **B**

reaction of pent-1-yne with N-octylmaleimide [eqn. (3), Fig. 1].^{2a} The ¹³C NMR C=O and C=C signals of **3ab** and **3ad** were similar to those of A and B except the phenylene C=C signals of 3ad (Fig. 1). This fact demonstrates that the efficient nickel(0)-catalysed 1a-2b and 1a-2d double-cycloaddition copolymerisations occurred to afford poly(imide)s 3ab and 3ad with an exo, exo-stereochemistry. Poly(imide)s 3aa, 3ac, 3ae, 3ba, 3bd and 3cb were similarly identified spectroscopically using model compounds prepared by the nickel(0)-catalysed 2:2 cycloaddition of N-phenyl-, N-octyl- or N-ethyl-maleimide with 1c, pent-1-yne or hex-3-yne,^{2a} in which 1c yielded a 1,8-diphenyl-substituted bicyclo[2.2.2]oct-7-ene ring regioselectively [eqn. (3)]. The relative composition of the two types of repeat units corresponding to A and B in 3aa was determined to be $\mathbf{A}: \mathbf{B} = 1.1$ by using a ¹H NMR relative peak area of the signal at δ 5.70 (a vinylene-type proton) to the signal at δ 4.19 (two protons of a methylene group connecting two phenylenes). This value was the same as that obtained from the model reaction.

Unique poly(imide)s were also formed. Octa-1,7-diyne 1d acted as two monoyne molecules to produce the soluble poly(imide) 3db containing pendant cyclohexene rings formed by a regioselective intramolecular cyclisation of 1d without the formation of an alkynyl-substituted bicyclo[2.2.2]oct-7-ene structure C, which may generate a cross-link to produce an insoluble copolymer. An alkyne with an electron-releasing functional group could be used: ethoxyacetylene 1e copolymerised with 2b to produce 3eb with a vinyl ether moiety. Poly(imide) 3eb had a repeat unit containing a regioselectively formed 1,8-diethoxy-substituted bicyclo[2.2.2]oct-7-ene ring. In contrast, but-3-yn-2-one, *i.e.* an alkyne with an electron-withdrawing group, did not undergo copolymerisation.

The thermal stability of **3** was examined by thermogravimetric analysis (TGA) in air. T_{10} , the temperature causing a 10% mass loss, was 341, 362 and 343 °C for **3aa**, **3ad** and **3ae**, respectively.

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (Nos. 06227235 and 07216237) from the Ministry of Education, Science, Sports and Culture, Japan.

Footnote

[†] All reported M_n and M_w values were relative to polystyrene standards as determined by GPC in chloroform.

References

- G. W. Coates and R. M. Waymouth, *Comprehensive Organometallic Chemistry II*, ed. L. S. Hegedus, Elsevier, New York, 1995, vol. 12, p. 1193; J. S. Moore, p. 1209.
- 2 (a) T. Tsuda and H. Mizuno, The 69th Annual Meeting of The Chemical Society of Japan, Kyoto, 1995; 2H435. Inefficient nickel(0)-catalysed 2:2 alkyne-maleimide cycloaddition is reported. See: (b) A. J. Chalk, J. Am. Chem. Soc., 1972, 94, 5928.
- 3 N. E. Schore, Chem. Rev., 1988, 88, 1081; D. B. Grotjahn, Comprehensive Organometallic Chemistry II, ed. L. S. Hegedus, Elsevier, New York, 1995, vol. 12, p. 741.
- 4 The solubilising effect of long alkyl sidechains upon a polymer solubility is known. See: J. Majnusz, J. M. Catala and R. W. Lenz, *Eur. Polym. J.*, 1983, **19**, 1043; M. Ballauff, *Angew. Chem.*, *Int. Ed. Engl.*, 1989, **28**, 253; M. Rehahn, A.-D. Schlüter and G. Wegner, *Makromol. Chem.*, 1990, **191**, 1991.

Received, 20th May 1996; Com. 6/03503E