Nickel@)-catalysed alkyne-dimaleimide double-cycloaddition copolymerisation to form poly(imide)s

Tetsuo Tsuda,*^{*a*} Masaki Shimada^{*b*} and Haruna Mizuno^{*b*}

a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan ^bDepartment of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

A nickel(o) catalyst effects the double-cycloaddition copolymerisation of alkynes with dimaleimides to form poly- (imide)s.

The development of a new method of polymer synthesis utilising a transition metal catalyst's characteristic organic reaction has attracted recent attention.' Here we report a new type of transition metal-catalysed polymer synthesis, *i.e.* a nickel(o)-catalysed alkyne-dimaleimide double-cycloaddition copolymerisation to form a poly(imide) [eqn. (1)]. This alkyne-

dimaleimide copolymerisation is characterised by a unique and complex process in which two alkyne molecules connect two dimaleimide molecules by double-cycloaddition to generate a copolymer repeat unit containing a bicyclo[2.2.2]oct-7-ene ring *via* a nickel(o)-catalysed formation of a cyclohexadiene intermediate and its subsequent Diels-Alder cycloaddition with the dimaleimide [eqn. (2)]. This alkyne-dimaleimide copoly-

merisation is based on our recent study of an efficient and chemoselective nickel(o)-catalysed 2 : 2 alkyne-maleimide cycloaddition to afford an **exo,exo-bicyclo[2.2.2]oct-7-ene** derivative [eqn. *(3)],2a* which is a noteworthy reaction because

efficient transition metal-catalysed $[2 + 2 + 2]$ alkyne-alkene cycloaddition reactions are few.3 The present nickel(o)-catalysed alkyne-dimaleimide double-cycloaddition copolymerisation is a new method of poly(imide) synthesis and accordingly affords a variety of new poly(imide)s by various combinations of alkynes and dimaleimides.

The results of the copolymerisation are summarised in Table 1. The reaction was carried out in a 50 ml stainless steel autoclave under nitrogen. When a mixture of dec-l-yne **la** (1 mmol) and *N,N'*-1,1'-(4,4'-methylenediphenylene)dimaleimide **2a** (0.5 mmol) was heated at 90 "C for 20 h in dioxane (10 ml) in the presence of a nickel (0) catalyst generated from $Ni(cod)_2$ $(Ni: \text{alkyne} = 0.05)$ and 2 equiv. of PPh₃, poly(imide) **3aa** with $M_n = 8500$ and $M_w/M_n = 1.9$ [†] was obtained in 68% yield by concentration of the resulting reaction mixture under vacuum and precipitation with methylene chloride-diethyl ether. Compound **3aa** consisted of a white powder which was soluble in methylene chloride, chloroform and THF, partly soluble in benzene, but insoluble in diethyl ether and methanol.

Dimaleimide **2a** also copolymerised with tetradec-7-yne **lb,** but its copolymerisation with phenylacetylene **lc** and pent-1 -yne or hex-3-yne produced totally and partly insoluble copolymers, respectively. These results indicate that the introduction of a relatively long alkyl group such as an octyl group or two hexyl groups into the alkyne is necessary for the preparation of a soluble poly(imide) from **2a.4** Thus the nickel(o)-catalysed copolymerisations of **la** and **1 b** with various as $N, N'-1, 1'-(4,4'-oxydiphenylene)$ -

Table 1 Nickel(0)-catalysed alkyne l-dimaleimide 2 double-cycloaddition copolymerisation to form poly(imide)s 3 [eqn. (1)]^a

			3			
1	2		Yield $(\%)^b$	M_n^c	$M_{\rm w}/M_{\rm n}$	
a	a	aa	68	8500	1.9	
b	a	ba	49d	12 100	2.2	
c	b	cb	33	4500	1.9	
\mathbf{a}	b	ab	53	15000	1.4	
d	b	db	69 ^e	5400	2.7	
e	b	eb	41	5000	1.7	
a	c	ac	92	7400	2.3	
\mathbf{a}	d	ad	71	8800	1.7	
b	d	bd	23 ^d	7700	1.8	
a	е	ae	91	8300	1.9	

a **1** = 1 mmol; $1:2 = 2$; Ni(cod)₂-2PPh₃: **1** = 0.05; 1,4-dioxane (10 ml); 90 °C; 20 h. $\frac{b}{c}$ Based on the quantitative formation of 3. $\frac{c}{c}$ Determined by GPC with polystyrene standards in CHCl₃. d 150 °C. e **1d** = 0.5 mmol; $1d:2b = 1$.

dimaleimide 2c, N,N'-1,4-phenylenedimaleimide 2d and N,N'-1,3-phenylenedimaleimide **2e** afforded soluble poly(imide)s **3ac, 3ad, 3ae** and **3bd** with *M,* = 7000-9000.

The introduction of a relatively long alkylene group connecting two maleimide moieties into the dimaleimide was also effective in the preparation of a soluble poly(imide). *N,N'-* **1,6-Hexylenedimaleirnide 2b** was found to be a versatile dimaleimide component and copolymerised with **lc** to form soluble poly(imide) **3cb** while the **lc-2a** and **lc-2d** copolymerisations produced insoluble copolymers. The **la-2b** copolymerisation afforded poly(imide) **3ab** with $M_n = 15000$ and M_w / $M_n = 1.4$.

The structures of poly(imide)s **3** were determined by IR, **1H** and ¹³C NMR spectroscopy. Comparison of the ¹³C NMR C=O and C=C (a vinylene-type bridge of a bicyclic ring) signals between a poly(imide) and a model compound of a poly(imide) repeat unit was most decisive. Two regioisomeric model compounds **A** and **B** $(A : B = 1.1)$ were obtained quantitatively with an *exo,exo*-stereoselectivity by the nickel(0)-catalysed

Fig. 1 '3C NMR (CDC13) C=O and C=C signals of poly(imide)s **3ab** and **3ad** together with model compounds **A** and **B**

reaction of pent-1-yne with N -octylmaleimide [eqn. (3) , Fig. 11.20 The **13C** NMR C=O and C=C signals of **3ab** and **3ad** were similar to those of **A** and **B** except the phenylene C=C signals of **3ad** (Fig. 1). This fact demonstrates that the efficient nickel(o)-catalysed **la-2b** and **la-2d** double-cycloaddition copolymerisations occurred to afford poly(imide)s **3ab** and **3ad** with an **exo,exo-stereochemistry.** Poly(imide)s **3aa, 3ac, 3ae, 3ba, 3bd** and **3cb** were similarly identified spectroscopically using model compounds prepared by the nickel(o)-catalysed 2 : 2 cycloaddition of N-phenyl-, N-octyl- or N-ethyl-maleimide with \mathbf{lc} , pent-1-yne or hex-3-yne,^{2*a*} in which \mathbf{lc} yielded a 1 ,8-diphenyl-substituted bicyclo[2.2.2]oct-7-ene ring regioselectively [eqn. (3)]. The relative composition of the two types of repeat units corresponding to **A** and **B** in **3aa** was determined to be $\mathbf{A} : \mathbf{B} = 1.1$ by using a ¹H NMR relative peak area of the signal at δ 5.70 (a vinylene-type proton) to the signal at δ 4.19 (two protons of a methylene group connecting two phenylenes). This value was the same as that obtained from the model reaction.

Unique poly(imide)s were also formed. Octa-l,7-diyne **Id** acted as two monoyne molecules to produce the soluble poly(imide) **3db** containing pendant cyclohexene rings formed by a regioselective intramolecular cyclisation of **Id** without the formation of an alkynyl-substituted bicyclo[2.2.2]oct-7-ene structure **C,** which may generate a cross-link to produce an insoluble copolymer. An alkyne with an electron-releasing functional group could be used: ethoxyacetylene **le** copolymerised with **2b** to produce **3eb** with a vinyl ether moiety. Poly(imide) **3eb** had a repeat unit containing a regioselectively formed **1,8-diethoxy-substituted** bicyclo[2.2.2]oct-7-ene ring. In contrast, but-3-yn-2-one, *i.e.* an alkyne with an electronwithdrawing group, did not undergo copolymerisation.

The thermal stability of **3** was examined by thermogravimetric analysis (TGA) in air. T_{10} , the temperature causing a 10% mass loss, was 341, 362 and 343 "C for **3aa, 3ad** and **3ae,** respectively.

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (Nos. 06227235 and 07216237) from the Ministry of Education, Science, Sports and Culture, Japan.

Footnote

 \dagger All reported M_n and M_w values were relative to polystyrene standards as determined by GPC in chloroform.

References

- 1 G. W. Coates and R. M. Waymouth, *Comprehensive Organometallic Chemistry II,* ed. L. **S.** Hegedus, Elsevier, New York, 1995, vol. 12, p. 1193; J. **S.** Moore, p. 1209.
- 2 *(a)* T. Tsuda and H. Mizuno, The 69th Annual Meeting of The Chemical Society of Japan, Kyoto, 1995; 2H435. Inefficient nickel(o)-catalysed 2 : 2 alkyne-maleimide cycloaddition is reported. See: *(b)* A. J. Chalk, *J. Am. Chem. Soc.,* 1972,94,5928.
- 3 N. E. Schore, *Chem. Rev.,* 1988, 88, 1081; D. B. Grotjahn, *Comprehensive Organometallic Chemistry II,* ed. L. **S.** Hegedus, Elsevier, New York, 1995, vol. 12, p. 741.
- 4 The solubilising effect of long alkyl sidechains upon a polymer solubility is known. See: J. Majnusz, J. M. Catala.and **R.** W. Lenz, *Eur. Polym. J.,* 1983,19,1043; M. Ballauff,Angew. *Chem., Int. Ed. Engl.,* 1989,223,253; **M.** Rehahn, A.-D. Schliiter and G. Wegner, *Makromol. Chem.,* 1990,191, 1991.

Received, 20th May 1996; Corn. 6103503E