Anodic deposition of PbO_2/Co_3O_4 composites and their use as electrodes for oxygen evolution reaction

Marco Musiani

Istituto di Polarografia ed Elettrochimica Preparativa del CNR, 4 Corso Stati Uniti, 35127 Padova, Italy

Anodically produced composites in which both the matrix and the dispersed phase are metal oxides (*e.g.* PbO_2/Co_3O_4) are active electrocatalytic materials for the oxygen evolution reaction.

Cathodic deposition of metal-matrix composites is well documented in the literature.¹⁻⁵ The composites are obtained by electrolysis of suspensions of electrochemically inert particles in solutions containing electroactive metal cations; when these ions are reduced to form a metal deposit, the particles may become embedded in it. Most composite deposition studies have been aimed at producing metal coatings with special wear resistance or self-lubricating properties,⁶ but recently the preparation of electrocatalysts for either hydrogen⁷⁻¹⁰ or oxygen evolution reactions¹¹ has been also pursued with some success. To this aim, the metal matrix (usually Ni) has been modified by electrocatalytic particles (*e.g.* RuO_2).

Anodic deposition of composites is much less known than the cathodic process and in this case the matrix cannot be a metal or an alloy. Both polymer–matrix^{12–14} and oxide–matrix^{15,16} alloys have been electrochemically produced. In the latter class, PTFE/ β -PbO₂ layers were prepared as hydrophobic electrocatalysts for the oxidation of organic molecules.^{15,16}

With the aim of producing new electrocatalysts for the oxygen evolution reaction (OER), and possibly other electrochemical oxidation processes, we have investigated the anodic deposition of composites in which a metal oxide of large electronic conductivity is the matrix and an electrocatalytic transition-metal oxide is the dispersed phase. The present work focuses on the synthesis and electrocatalytic properties of PbO₂/ Co_3O_4 composites. This system was selected because PbO₂ is an industrially important anode¹⁷ and Co_3O_4 is an active and inexpensive electrocatalytic material.¹⁸ However, many other combinations of matrixes (*e.g.* Tl₂O₃, MnO₂) and dispersed phases (*e.g.* RuO₂, NiCo₂O₄) may be obtained in a similar way.

The composite layers were electrodeposited onto Ni rotating disc electrodes at constant current density (typically in the range 1-10 mA cm⁻²) using a cell with an anode and two cathode compartments. The particles, present only in the anode compartment, were kept in suspension by vigorous stirring. Large Pb sheets were used as cathodes. Two electrodeposition solutions were employed; (i) 0.13 mol dm⁻³ Pb(MeCO₂)₂ + 0.9 mol dm⁻³ Pb(NO₃)₂, pH 4.4 (acid solution) and (ii) 0.1 mol dm⁻³ Pb(MeCO₂)₂ + 3 mol dm⁻³ NaOH (basic solution). The latter is known to yield α -PbO₂ while either α - or β -PbO₂ is produced from the former depending on current density. The Co_3O_4 particles were *ca*. 1 μ m in size. As a general trend, the amount of particles in the composite (evaluated by SEM-EDX analysis) increased by increasing the electrode angular speed ω and the particle concentration in the suspension and by decreasing the current density. A high angular speed also favoured the formation of deposits of homogeneous composition. By electrolysing suspensions with Co₃O₄ volume fraction of 0.0082 at $j = 7 \text{ mA cm}^{-2}$ and $\omega = 1500 \text{ rpm}$, deposits with Co₃O₄ volume fractions of 0.14 and 0.09 were obtained from the basic and acid solutions respectively.

Fig. 1(*a*) shows that oxygen evolution from 1 mol dm⁻³ NaOH occurred at markedly less positive potentials on PbO₂/ Co₃O₄ composite electrodes than on either PbO₂ or Ni (at $j = 100 \text{ mA cm}^{-2}$ the potential of the PbO₂/Co₃O₄ composites was *ca*. 300 mV lower than that of Ni). Tafel slopes were 230, 105 and 60 mV (decade)⁻¹ for PbO₂ and composites prepared from the acid and basic solutions respectively. Fig. 1(*b*) shows that similar results were obtained in 1 mol dm⁻³ HClO₄; again PbO₂/Co₃O₄ composites were better electrode materials than Ni and PbO₂ (at $j = 100 \text{ mA cm}^{-2}$ the potential of the PbO₂/Co₃O₄ composite electrode prepared from the basic solution was *ca*. 100 mV less positive than that of Ni). The Tafel slopes were lower for composites [105 and 110 mV (decade)⁻¹ for those prepared from acid and basic solutions respectively] than for pure PbO₂ [165 mV (decade)⁻¹].

In both NaOH and HClO₄ media the composites prepared from the basic solution were more active than those prepared from acid solution. As the morphology of both deposits was similar (SEM) and X-ray diffraction showed both composites to

Fig. 1 Comparison of pseudo-steady-state current density-potential curves for OER on Ni, PbO₂ (from acid solution) and PbO₂/Co₃O₄ composites in 1 mol dm⁻³ NaOH (*a*) or 1 mol dm⁻³ HClO₄ (*b*). The electrode surface was in a vertical plane; *iR* drop was corrected.

Chem. Commun., 1996 2403

consist of an α -PbO₂ matrix, the higher activity of the former is probably a result of their higher Co₃O₄ content. However, a direct proportionality between OER current densities and Co₃O₄ volume fraction was not observed (surface rather than volume fraction would be more appropriate for attempting normalisation, but such data are not available at this stage). For the composite electrodes prepared from the basic solution, overpotentials for OER at j = 10 mA cm⁻³ were *ca*. 480 mV in 1 mol dm⁻³ NaOH and *ca*. 460 mV in 1 mol dm⁻³ HClO₄. At the same current in 1 mol dm⁻³ KOH, overpotentials of Co₃O₄ electrodes prepared by thermal decomposition¹⁹ and spray pyrolysis²⁰ were 350–450 mV and >550 mV respectively.

When a constant *j* of 100 mA cm⁻² was imposed to PbO_2/Co_3O_4 electrodes in an NaOH solution, their potential remained stable for several days. Comparable tests carrier out in HClO₄ showed a less steady performance, probably due to the instability of PbO₂.^{16,17}

SEM pictures of PbO₂ and PbO₂/Co₃O₄ deposits showed that particle incorporation increased the electrode roughness. Therefore, the marked increase in OER current density obtained with composite electrodes was likely to be the result of both kinetic and geometric factors. However, the change in the Tafel slopes was diagnostic of an authentic electrocatalytic effect by the Co_3O_4 sites.

The author gratefully acknowledges Dr P. Guerriero for SEM–EDX analyses and Mr F. Furlanetto for experimental assistance.

References

1 J. R. Roos, J. P. Celis, J. Fransaer and C. Buelens, J. Met., 1990, 42, 60.

- 2 J. P. Celis, J. R. Roos, C. Buelens and J. Fransaer, *Trans. Inst. Met. Finish.*, 1991, **69**, 133.
- 3 C. Buelens, J. Fransaer, J. P. Celis and J. R. Roos, Bull. Electrochem., 1992, 8, 371.
- 4 J. Fransaer, J. P. Celis and J. R. Roos, Met. Finish., 1993, 91, 97.
- 5 A. Hovestad and L. J. J. Jansen, J. Appl. Electrochem., 1995, 25, 519.
- 6 S. Alexandridou, C. Kiparissides, J. Fransaer and J. P. Celis, Surf. Coat. Technol., 1995, 71, 267.
- 7 A. Anani, Z. Mao, S. Srinivasan and A. J. Appleby, J. Appl. Electrochem., 1991, 21, 683.
- 8 C. Iwakura, N. Furukawa and M. Tanaka, *Electrochim. Acta*, 1992, 37, 757.
- 9 . J. Miao and D. L. Piron, Electrochim. Acta, 1993, 38, 1079.
- 10 A. C. Tavares and S. Trasatti, *GEI 95*, Riccione 24–27 Sept. 1995, Ext. Abs. O13.
- 11 M. Olesky, A. Budniok, J. Niedbala and P. Matyja, *Electrochim. Acta*, 1994, **39**, 2439.
- 12 K. Kawai, N. Mihara, S. Kuwabata and H. Yoneyama, J. Electrochem. Soc., 1990, **137**, 1793.
- 13 F. Beck, M. Dahlhaus and N. Zahedi, *Electrochim. Acta*, 1992, **37**, 1265.
- 14 F. Beck and M. Dahlhaus, J. Appl. Electrochem., 1993, 23, 781.
- 15 A. Yoshiyama, T. Nonaka, M. Sekimoto and Y. Nishiki, Chem. Lett., 1994, 1565.
- 16 C. N. Ho and B. J. Hwang, J. Electroanal. Chem., 1994, 377, 177.
- 17 The Electrochemistry of Lead, ed. A. T. Kuhn, Academic Press, London, 1979.
- 18 S. Trasatti, Electrochim. Acta, 1984, 29, 1503.
- 19 C. Iwakura, A.Honji and H. Tamura, *Electrochim. Acta*, 1981, 26, 1319.
- 20 R. N. Singh, J.-F. Koenig, G.Poillerat and P. Chartier, J. Electrochem. Soc., 1990, 137, 1408.

Received, 17th July 1996; Com. 6/05004B