Syntheses of metal diynyl complexes: novel routes to all-carbon ligands

Michael I. Bruce, Mingzhe Ke and Paul J. Low

Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia

CuI-catalysed reactions between halide complexes of Fe, Mo, W or Pt and an excess of buta-1,3-diyne in the presence of diethylamine lead to the formation of buta-1,3-diynyl compounds; elaboration of the diynyl ligand is achieved by replacement of H by either non-metal or metal groups, by coordination to the C=C triple bonds and by incorporation of **the terminal C atoms into clusters with consequent elec**tronic rearrangement along the C_4 chain.

As part of our studies on the properties of metal complexes and clusters containing all-carbon ligands,¹ we required access to a number of transition-metal-substituted diacetylides. Bimetallic compounds with carbon bridges linking the metal centres, $[L_m M] - C_n - [M'L'_m]$, also excite interest because of their potential applications in the new materials industry.2 Several synthetic routes to divnyl complexes have been reported.³ However, the preparation of asymmetrically substituted diacetylides using existing methodologies generally requires either a multi-step protection/deprotection approach, $3b,d,e,h$ or the preparation of a terminal diyne, $HC = \dot{CC} = CR$, for each diacetylide complex desired.^{3f} We now report simple procedures that yield a range of *(i)* metal-diynyl complexes bearing the C \equiv C \equiv C \equiv CH ligand; *(ii)* novel homo- and hetero-bimetallic C₄ complexes; *(iii)* substituted derivatives of general form $[W(\text{C=CC=CR})(\text{CO})_3(\eta-\text{C}_5H_5)]$ (R = SiMe₃, Ph, PPh₂); *(iv)* new heterometallic clusters containing $\mu_3, \eta^1 : \mu_3, \eta^1$ -CC=CC ligands, using buta-1,3-diyne as the only source of the C_4 ligand.

A useful general synthesis of transition-metal acetylide complexes is from CuI-catalysed reactions of the halides with alk-1-ynes in amine solvents.⁴ Similar preparations of group 10 diynyl complexes were reported by Hagihara and coworkers some years ago.3h These reactions have now proved to be excellent sources of diynyl complexes containing a range of different metals. For example, addition of a five-fold excess of buta-1,3-diyne, as a 2 mol dm⁻³ solution in thf,⁵ to an NHEt₂ solution of $[WCl(CO)₃(\eta-C₅H₅)]$ in the presence of CuI resulted in a rapid colour change from red to bright yellow, and
the precipitation of $[NH₂Et₂]Cl$. The complex $[NH₂Et₂]Cl.$ $[W(C\equiv \stackrel{\frown}{C}C\equiv \stackrel{\frown}{CH})(CO)_{3}(\eta-C_{5}H_{5})]$ **1** (Scheme 1) was isolated as a bright yellow powder (90%) after column chromatography on Al_2O_3 .; Similar reactions with, for example, $\text{[MoCl}(CO)_3(\eta-C_5H_5)]$, $\text{[FeCl}(CO)_2(\eta-C_5H_5)]$ and $\text{[PtCl}_2(\text{dppe})]$, gave C₅H₅)], [FeCl(CO)₂(η-C₅H₅)] and [PtCl₂(dppe)], gave **[Mo(C≡CC≡CH)**-
[Mo(C≡CC≡CH)(CO)₃(η-C₅H₅)] **2** (60%), [Fe(C≡CC≡CH)- $(CO)_2(\eta - C_5H_5)$] **3** $(30\%)^{3b,e}$ and $[Pt(C\equiv CC\equiv CH)_2(dppe)]$ **4 (94%),** respectively.

The diynediyl complexes are each characterised by a single, strong $v(C=C)$ absorption near 2150 cm⁻¹, while in their ¹³C NMR spectra, resonances near δ 110, 72, 70 and 65 were assigned to C_{α} , C_{β} , C_{γ} and C_{δ} , respectively. For 1, and the other W diynyl complexes described below, C_{α} showed coupling to ¹⁸³W (J_{CW} typically 60–70 Hz). The C_β and C_γ carbons of 1 also displayed longer-range coupling to ¹⁸³W, which assisted in their assignment. The reactivity of the free C=CH group in 1-4 has been examined, resulting in the formation of a variety of complexes containing di- and poly-alkynyl ligands. Representative examples for **1** are shown in Scheme 1 and described below. In general, the terminal alkyne moiety behaves as a typical, if rather electron-rich, organic acetylene.

Replacement of the acetylenic H atom in **1** is readily achieved. For example, addition of an equimolar amount of $[WCl(CO)₃(\eta-C₅H₅)]$ to a solution of 1 in thf-NHEt₂ containing a catalytic amount of CuI resulted in the formation of the bis-
metallated diynediyl complex $[(n-C₅H₅)(CO)₃W]₂(\mu [{ (η-C₅H₅)(CO)₃W }₂(μ C\equiv CC\equiv C$] **5** (80%) as a rather insoluble yellow powder.[†] The Mo analogue **6** (77%) and the heterobimetallic complexes { **(y-** $C_5H_5(CO)_3W$ C=CC=C{Fe(CO)₂(η -C₅H₅)}] **8** (65%)^{3b} and $[Pt{ C \equiv C \equiv C[W(CO)_3(\eta-C_5H_5)] }_2(dppe)]$ **9** (74%) were prepared using the same methodology with the appropriate chlorometal precursors. C_5H_5 $(CO)_3W$ }C=CC=C{Mo(CO)₃ $(\eta$ -C₅H₅}}] **7** (95%), [{ $(\eta$ -

Whilst attempts to react **1** with BunLi resulted in extensive decomposition, **1** is cleanly deprotonated by lithium diisopropylamide and the resulting anion can be trapped by reactions

Scheme 1 *Reagents:* i, **CuI, NHEt2,** [MLJCl; **ii, CuI, NHEt2, [PtCl,(dppe)]; iii, LDA, SiClMe,; iv, C6H51, [Pd(PPh3)4], CuI; v, [Cu(tmeda)]Cl,** 02; vi , $[Co₂(CO)₈].$ Yields in parentheses.

with SiClMe₃, PClPh₂ or [MnBr(CO)₅] to give [W(C \equiv CC \equiv CSi- $M_{\rm e}$ ₃)(CO)₃(η -C₅H₅)] **10** (80%), $[\widetilde{W}$ (C=CC=CPPh₂)(CO)₃(η -C₅H₅)| **11** (25%) and $[\{\eta$ -C₅H₅)(CO)₃W}C=CC= $C\{Mn(CO)₅\}$] **12** (20%), respectively. $[(\eta - C_5H_5)(CO)_3W]$ C=CC=

The terminal diynyl ligand can be coupled with iodoarenes in the presence of catalytic amounts of $[Pd(PPh₃)₄]$ and CuI. Thus $[W(\text{C} \equiv \text{CC} \equiv \text{CPh})(\text{CO})_3(\eta - \text{C}_5\text{H}_5)]$ 13⁺ was prepared in 66% yield by treating a diisopropylamine solution of **1** with a 1.5-fold excess of iodobenzene in the presence of the mixed catalyst. Similar reactions with p -iodoanisole, p -iodotoluene and methyl p-iodobenzoate yielded the substituted derivatives in 35-90% yields.

Recently, the dimetallated tetraynes $[{Re(PPh₃)(NO)(\eta⁵$ been prepared by oxidative coupling of the appropriate diynyl complexes using $Cu(O_2CMe)_2$ in pyridine at elevated temperatures. Similar attempts to prepare $[(\eta$ -C₅H₅)(CO)₃W}₂(μ -Cg)] **14** resulted only in extensive decomposition of **1.** However, under the milder Hay conditions ($Cu₂Cl₂$ -tmeda, O₂ purge, acetone, room temp.), 8 homo-coupling of the diynyl ligand proceeded smoothly to give the dimetallated tetrayne **14** (85%) as a deep orange powder.? At low cone voltage in the presence of a small amount of AgN03,9 the electrospray **(ES)** MS of **14** contained peaks at high molecular masses, corresponding to the dimeric Ag⁺-bridged species $[{W_2(\mu-C_8)(CO)_6(\eta-C_5H_5)_2}]_2(\mu-$ Ag)]⁺ $(m/z$ 1631) and the [Ag(NCMe)]⁺-coordinated species [{ **W2(p-C8)(Co)6(q-C5H5)2)Ag(NCMe)]+** *(rnlz* 91 1). At higher cone voltages, fragmentation due to the successive loss of CO ligands from **14 was** observed. (C_5Me_5) ₂(μ -C₈)]⁶ and [{Fe(dppe)(η ⁵-C₅Me₅)}₂(μ -C₈)]⁷ have

The reactivity of the triple bonds in some of these compounds has also been probed. Reactions between $[Co_2(CO)_8]$ and 1 or 8 occurred at the less sterically hindered **GC** triple bonds to yield the derivatives $[Co_2{\mu \text{-} RC}_2C\equiv C[W(CO)_3(\eta \text{-} C_5H_5)]$ $(CO)_6]$ $[R = H 15, Fe(CO)₂(\eta-C₅H₅)$, respectively]. We have recently described the related compounds $[Co_2{\mu} - RC_2C \equiv C[W(CO)_3(\eta [C_5H_5]$] $(\mu$ -dppm $(CO)_4$] $(R = H, SiMe_3)$.¹⁰ However, treatment of **5, 6** or **7,** in which both ends of the diynyl chain are terminated by bulky $M(CO)₃(\eta - C₅H₅)$ groups ($M = Mo, W$), with $[Co_2(CO)_8]$ is a novel route to the $MCo_2(\mu_3-C)$ clustercapped acetylenes $[{CO_2M(\mu_3-C)(CO)_8(\eta-C_5H_5)}(\mu-C\equiv C)$ ${(\overline{Co_2}M'(\mu_3-C)(CO)_8(\eta-C_5H_5))}$ $(M = M' = Mo 16a, W 16b;$ $M = Mo$, $M' = W$ **16c**) in 20–40% yield. Their crystallographically determined structures are similar to that reported for $[{CO_3(\mu_3-C)(CO)_9}_{2}(\mu-C\equiv C)]^{11}$ and will be described elsewhere; the bridging C_4 ligand originally present in 1 has been formally oxidised to a dicarbyne.^{1c}

Facile oxidative addition reactions of 1 with $\text{[Ru}_{3}(\text{CO})_{10}L_{2}\text{]}$ (L = NCMe, L_2 = dppm) give hydrido clusters containing μ_3 - η ¹, η ²-bonded alkynyl ligands in high yield. Thus, the reaction between $[Ru_3(\mu$ -dppm)(CO)₁₀] and 1.5 equiv. of 1 afforded $[Ru_3(\mu-H) \{\mu_3-\eta^1, \eta^2-C_2C\equiv C[W(CO)_3(\eta-C_5H_5)]\}(\mu\text{-dppm})$

 $(CO)_7$] 17† (92%), which has been fully characterised crystallographically. In solution at room temp. this complex exists as an interconvertible mixture of isomers *(ca.* 2 : l), the major component showing the usual windscreen-wiper motion found for cluster-bound acetylide ligands.¹² The minor isomer contains the µ-diynyl ligand locked between the phenyl rings of the μ -dppm ligand in a manner similar to that found in [Ru₃(μ -H)(μ_3 - $\bar{\eta}$ ¹, η ²-C₂C \equiv CSiMe₃)(μ -dppm)₂(CO)₅].¹⁰

In conclusion, simple procedures have been developed which make **1** a readily available precursor for the synthesis of a range of new diyndiyl complexes. Other examples of the rich chemistry afforded by **1,** and related complexes such as **4** and **11,** will be the subject of future reports.

We thank the Australian Research Council for support. The assistance of Professor B. **K.** Nicholson (University of Waikato, Hamilton, New Zealand) in providing the **ES** mass spectra is gratefully acknowledged. **P. J.** L. holds an Australian Postgraduate Award.

Footnote

t All new complexes have satisfactory C, H analyses. *Selected spectroscopic data*: 1 IR (CH₂Cl₂): v (C \equiv C) 2145m; v (CO) 2044s, 1958s (br) cm⁻¹. ¹H NMR (CDCl₃): δ 5.66 (5 H, s, C₅H₅), 2.03 (1 H, s, C=CH). ¹³C NMR (CDC13): 6 227.41 (t, *Jcw* 70 Hz, CO), 210.87 (t, *Jcw* 70 Hz, CO), 110.52 (br, C_{α}) , 91.51 (s, C_5H_5), 71.60 (t, J_{CW} 44 Hz, C_{β}), 70.13 (t, J_{CW} 47 Hz, C_{γ}), (br, C_o), 91.51 (s, C₅H₅), 71.60 (t, J_{CW} 44 Hz, C_B), 70.13 (t, J_{CW} 47 Hz, C_y), 63.30 (s, C₆). ESMS: (low cone voltage) *m/z* 396, [M + MeCN + H – CO]⁺; 63.30 (s, C₆). ESMS: (low cone voltage) m/z 396, [M + MeCN + H – CO]⁺; (168, [M + NCMe + H – 2CO]⁺; (168, [M + H – CO]⁺; (high cone voltage) 368, [M + NCMe + H − 2CO]⁺; 355, [M + H − CO]⁺; (high cone voltage) *m/z* 299, [M + H − 3CO]⁺. **5** IR (CH₂Cl₂): v (C≡C) 2145w; v (CO) 2043s, 2037s, 1955s (br) cm-1. ESMS: (low cone voltage) *rnlz* 687, [M + H - CO]⁺; (high cone voltage) m/z 687-547, $[M + H - nCO]$ ⁺ $(n = 1-6)$. 13 IR (CH₂Cl₂): v(C=C) 2183m, 2059m; v(CO) 2038vs, 1956s (br) cm⁻¹. ¹H NMR (CDCl₃): δ 7.27--7.46 (5 H, m, Ph), 5.68 (5 H, s, C₅H₅). ¹³C NMR (s, 0-C), 128.16 (s, *m-C),* 127.97 *(s,* p-C), 123.05 (s, ipso-C), 11 1.03 (t, *JCW* 11 Hz, C_α), 91.62 (s, C₅H₅), 76.19, 73.78 (2 × s, C_γ and C₈); C_β not observed. FABMS: *m*/z 458, M⁺; 430, [M – CO]⁺. **14** IR (CH₂Cl₂): v(C \equiv C) 2190w; v(CO) 2043s, 1959vs cm⁻¹. ¹H NMR (CDCl₃): δ 210.26 (s, CO), 112.39 (br, C_α), 91.66 (s, C₅H₅), 91.60 (s, C_β), 63.70 (s, C_γ), 60.91 (s, C_δ). 17 IR (CH₂Cl₂): v(CO) 2062m, 2054m, 2037s, 2004vs, 1981s, 1948vs cm⁻¹. ¹H NMR (CDC1₃): δ 7.63-7.10 (m, 60 H, Ph), 5.65 [s, 10 H, (CDC13): 6 227.60 (t, *Jcw* 60 Hz, CO), 210.64 (t, *Jcw* 71 Hz, CO), 132.38 C5H5), 5.32 (s, < 1 H, CH2C12). '3C NMR (CDC13): 6 227.32 **(s,** CO), $C_5H_5(1)$, 5.50 [s, 5 H, $C_5H_5(2)$], 4.39, 3.53 [2 \times dt, J_{HH} 13, J_{HP} 11 Hz, 2 \times 2 H, CH₂P₂(1)], 4.39, 3.17 [2 \times dt, J_{HH} 12, J_{HP} 12 Hz, 2 \times 1 H, CH₂P₂(2)], -19.21 [m, 2 H, μ -H(1)], -19.74 [t, J_{HP} 15 Hz, 1 H, μ -H(2)]. ESMS: m/z (high cone voltage with NaOMe added) 1289, [M + Na]⁺; 1261, $[M + Na - CO]$ ⁺; (negative ion, with NaOMe added) 1297, $[M + OMe]$ ⁻; 1265 , $[M - H]$ ⁻.

References

- 1 (a) C. J. Adams, M. I. Bruce, E. Horn, B. W. Skelton, E. R. T. Tiekink and A. H. White, J. *Chem. SOC., Dalton Trans.,* 1993, 3299; 3313; *(6)* M. I. Bruce, P. Hinterding, E. R. T. Tiekink, B. W. Skelton and A. H. White, *J. Organomet. Chem.,* 1993, 450, 209; (c) M. I. Bruce, L. I. Denisovich, P. J. Low, S. M. Peregudova and N. A. Ustynyuk, *Mendeleev Commun.,* 1996, 200.
- **2** W. Beck, B. Niemer and M. Wieser, *Angew. Chem., Int. Ed. Engl.,* 1993, 32, 923; H. Lang, *Angew. Chem., Int. Ed. Engl.,* 1994,33, 547.
- **3** *(a)* K. Sonogashira, Y. Fujikura, T. Yatake, **N.** Toyoshima, S. Takahashi and N. Hagihara, *J. Organornet. Chem.,* 1978, 145, 101; (b) A. Wong, P. C. W. Kang, C. D. Tagge and D. R. Leon, *Organometallics,* 1990,9, 1992; (c) H. B. Fyfe, M. Mlekuz, D. Zagarina, **N.** J. Taylor and T. B. Marder, *J. Chem. SOC., Chem. Commun.,* 1991, 188; (d) Y. Sun, N. J. Taylor and A. J. Carty, *Organometallics,* 1992, **11,** 4293; *(e)* R. Crescenzi and C. Lo Sterzo, *Organometallics,* 1992, 11, 4301; (f) H. Werner, 0. Gevert, P. Steinert and J. Wolf, *Organometallics,* 1995, 14, 1786; *(g)* N. Le Narvor, L. Toupet and C. Lapinte, *J. Am. Chem. SOC.,* 1995, 117, 7129; *(h)* W. Weng, T. Bartik, M. Brady, B. Bartik, J. A. Ramsden, A. M. Arif and J. A. Gladysz, *J. Am. Chem. SOC.,* 1995,117, 11922.
- 4 K. Sonogashira, Y. Fujikura, T. Yatake, **N.** Toyoshima, S. Takahashi and N. Hagihara, *J. Organomet. Chem.,* 1978, 145, 101; M. V. Russo and A. Furlani, *J. Organomet. Chem.,* 1979, 165, 101; M. I. Bruce, M. G. Humphrey, J. G. Matisons, S. K. Roy and A. G. Swincer, *Aust. J. Chem.,* 1984,37, 1955.
- 5 L. Brandsma, *Preparative Acetylenic Chemistry,* Elsevier, Amsterdam, 1988, p. 178.
- 6 M. Brady, W. Weng and J. A. Gladysz, *J. Chem. Soc., Chem. Commun.,* 1994,2655.
- 7 F. Coat and C. Lapinte, *Organometallics,* 1996, 15, 477.
- 8 A. S. Hay, *J. Org. Chem.,* 1962, 27, 3320.
- 9 B. K. Nicholson and W. Henderson, *J. Chem. SOC., Chem. Commun.,* 1995,2531.
- 10 M. 1. Bruce, P. J. Low, A. Werth, B. W. Skelton and A. H. White, *J. Chem. Soc., Dalton Trans.,* 1996, 155 1.
- 11 R. J. Dellaca, B. R. Penfold, B. H. Robinson, W. T. Robinson and J. L. Spencer, *Inorg. Chem.,* 1970,9,2204.
- 12 G. Predieri, A. Tiripicchio, C. Vignali and E. Sappa, *J. Organomet. Chem.,* 1988,342, C33.

Received, 9th August 1996; Corn. 6105559A