Synthesis of a new volatile technetium(VII) oxofluoride, TcOF₅

Nicolas LeBlond and Gary J. Schrobilgen*

The Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada

Krypton difluoride reacts with TcO_2F_3 in HF at room temperature to yield the last member of the Tc^{VII} oxofluoride series, $TcOF_5$, which is characterized in solution by ¹⁹F and ⁹⁹Tc NMR spectroscopy and in HF solution and in the solid state by Raman spectroscopy

Technetium-99, a low energy β -emitter (293 keV β^- ; $t_s = 2.13 \times 10^5$ y), makes up approximately 6% of the uranium fission products produced by commercial nuclear reactors. Fluorination of the unspent nuclear fuel, in the form of UO₂, for reenrichment of ²³⁵U yields volatile TcO₃F, TcF₆ and possibly other technetium oxofluorides which must be separated from UF₆ process feeds prior to enrichment by gaseous diffusion. Technetium-99 enters the gaseous diffusion stream and remains as a low-level contaminant in ²³⁵U enriched UF₆ which may be released into the environment when nuclear fuel elements are refabricated. Consequently, an understanding of the fluoride and oxofluoride chemistry of high-valent technetium is of fundamental importance to the reprocessing of nuclear fuels.¹

Unlike their rhenium analogues, ReO₃F, ReO₂F₃ and ReOF₅, which have been known for some time,^{2,3} the members of the technetium(VII) oxofluoride series have proven more difficult to synthesize. Pertechnyl fluoride, TcO₃F, a volatile yellow liquid was prepared by passing fluorine gas over TcO2 at 150 °C4 and by the solvolysis of pertechnetate salts in anhydrous HF and has been spectroscopically characterized.⁵ Over 30 years elapsed before the next highest oxofluoride, TcO₂F₃, was prepared in our laboratory by the solvolysis of Tc₂O₇ in anhydrous HF to give TcO₃F followed by fluorination with XeF₆, which also served to scavenge water formed in the solvolysis step, to give near quantitative yields of TcO₂F₃.⁶ The bright yellow solid was characterized by Raman spectroscopy and single-crystal X-ray diffraction and shown to be an open chain fluorine-bridged structure consisting of TcO₂F₄ units in which the oxygens are cis to each other and the bridge fluorines are trans to the oxygen atoms. Reaction of TcO₂F₃ with XeF₆ in HF led to the formation of $XeF_5^+TcO_2F_4^-$ and did not result in further fluorination to give TcOF₅.

In addition to $\text{ReOF}_{5,3}$ the only other +7 oxidation state, sixcoordinate species reported thus far are IOF_5^7 and $\text{OsOF}_{5,8}$ In view of the recent successful synthesis of *cis*-OsO₂F₄ from OsO₄ and KrF₂,⁹ a similar approach was used to prepare TcOF₅. Technetium(VII) oxide pentafluoride was prepared according to eqn. (1) by the reaction of TcO₂F₃ with a twofold excess of KrF₂

$$TcO_2F_3 + KrF_2 \xrightarrow{HF} TcOF_5 + \frac{1}{2}O_2 + Kr$$
 (1)

in anhydrous HF at room temperature in an FEP (perfluoroethylene-perfluoropropylene copolymer) reactor.[†] Because TcO₂F₃ has a negligible solubility in HF, reaction mixtures were periodically sonicated to give bright orange solutions of TcOF₅ over a period of 24 h. The solvent and remaining gaseous products were pumped off at -78 °C leaving behind a volatile orange solid, which was sublimed into a side-arm of the FEP reactor. The unreacted KrF₂, which sublimed along with TcOF₅, was allowed to decompose at room temperature and its presence was monitored by observing the intense v₁(Σ_g^+) stretching mode of KrF₂ at 462 cm⁻¹ in the Raman spectrum.¹⁰ Pure TcOF₅ melts reversibly and without decomposition at 57–58 °C and is deep red-orange in the liquid state. The solid is stable for at least two weeks at room temperature when kept under anhydrous conditions.

The gross structure of TcOF₅ was established by ¹⁹F NMR spectroscopy. At -110 °C in SO₂ClF solvent, the ⁹⁹Tc-¹⁹F scalar couplings are quadrupole collapsed as a result of the long rotational correlation time of the TcOF₅ molecule at this temperature.¹¹ The spectrum [Fig. 1(a)] consists of a doublet at δ 364.1 and a quintet at δ 62.0 having integrated intensities of 4.00: 1.00, and are assigned to the equatorial (F_e) and the axial (F_a) fluorines, respectively, confirming the pseudo-octahedral geometry I expected for the TcOF₅ molecule. The two-bond fluorine–fluorine scalar coupling, ${}^{2}J({}^{19}F_{a}-{}^{19}F_{e})$ 75 Hz, is very similar in magnitude to that observed for ReOF₅ (69 Hz).¹² At 35 °C in HF solvent [Fig. 1(b)], the ¹⁹F resonances of TcOF₅ occurred at δ 371.7 (Δv_{\pm} 4930 Hz) and δ 45.0 (Δv_{\pm} 1840 Hz), respectively, but were broadened by the partially quadrupole collapsed spin-spin coupling to the 99 Tc nucleus ($I = {}^{9}/{_2}$) that results from shorter rotational correlation times.‡ The saddle shape of the low-frequency resonance indicates that ${}^{1}J({}^{19}F_{a}-$ ⁹⁹Tc) is larger than ${}^{1}J({}^{19}F_{e}-{}^{99}Tc)$, and is consistent with a Tc- \ddot{F}_{a} bond that is more covalent than the Tc-Fe bonds. The trans influence of the oxo ligand does not appear to be dominant in this case. This observation is consistent with the results of normal coordinate treatments for ReOF₅ and OsOF₅ which

Fig. 1 The ¹⁹F NMR spectrum (282.409 MHz in ppm relative to CFCl₃ at 25 °C) of TcOF₅ (*a*) in SO₂ClF at -110 °C and (*b*) in HF at 35 °C

Chem. Commun., 1996 2479

Table 1 Vibrational frequencies and assignments for TcOF₅ compared to those of ReOF₅

	Frequency/cm ⁻¹				
	$\operatorname{ReOF}_{5}(g)^{a}$	$TcOF_5 (s)^b$	TcOF ₅ (HF soln.) ^{b,c}	Assignment C_{4v}	Approx. mode description
· · · · · · · · · ·	990s	933(28)	937(4), p	$v_1(A_1)$	$\nu_{svm}(MO)$
	740vs	702(100)	702(100), p	$v_2(A_1)$	$v_{sym}(MF_a + MF_{4e})$
	713s ^d	e	e	$v_8(E)$	$v_{as}(MF_{4e})$
	652m	616(8)	624(8), dp	$v_5(B_1)$	$v_{as}(MF_{2e} - MF_{2e})$
	640m	601(5)	598(2, sh), dp	$v_3(A_1)$	$v_{\rm sym}(MF_{\rm a}-MF_{\rm 4e})$
	367s	351(10)	346(10), dp	$v_{10}(E)$	$\delta_{as}(OMF_e)$, scissors
	334s	328(10)	329(10), dp	$v_7(B_2)$	$\delta_{as}(MF_{4e})$, scissors
	309vw	278(5)	289(2), dp	$v_4(A_1)$	$\delta_{\rm sym}(\rm MF_{4e})$, umbrella
	260s ^e	e	e	$v_{9}(E)$	$\delta_{as}(OMF_a + F_eMF_e)$
	234vw	206(2)	199(2), dp	$v_6(B_1)$	$\delta_{as}(MF_{4e})$, out-of-plane pucker
	125vw	131(1)	135(1 br), dp	$v_{11}(E)$	$\delta_{as}(OMF_a - F_eMF_e)$

^{*a*} From 14; relative intensities are denoted by strong (s), very strong (vs), medium (m), very weak (vw). ^{*b*} Raman spectra were recorded at 25 °C in the FEP reaction tubes using 647.1 nm excitation from a krypton ion laser; relative intensities are given in parentheses. ^{*c*} The abbreviations denote a shoulder (sh), polarized (p), depolarized (dp) and broad (br) Raman bands. ^{*d*} IR frequency; band too weak to be observed in the Raman spectrum. ^{*e*} Too weak to be observed in the Raman spectrum.

showed that the M–F_a force constants are significantly larger than the M–F_e force constants.¹³ The ⁹⁹Tc NMR spectrum (67.520 MHz) of TcOF₅ recorded at 35 °C in HF and at 30 °C in SO₂CIF showed broad resonances at δ 394.5 ($\Delta v_{\frac{1}{2}} = 440$ Hz) and δ 433.8 ($\Delta v_{\frac{1}{2}} = 6680$ Hz), respectively (relative to 0.1 M aqueous NH₄+TcO₄⁻ at 25 °C). No ¹J(⁹⁹Tc–¹⁹F) couplings could be resolved in either the ¹⁹F or ⁹⁹Tc NMR spectra because of quadrupolar broadening resulting from the fast relaxation rate of the ⁹⁹Tc nucleus.

Fifteen vibrational modes are expected for TcOF₅, all of which are Raman active and the A_1 and E modes are IR active: $\Gamma_{vib} = 4A_1 + 2B_1 + B_2 + 4E$. Nine of the expected eleven Raman bands have been observed and are assigned by analogy with the vibrational frequencies of ReOF₅ (Table 1). The vibrational frequencies of TcOF₅ are generally lower than their ReOF₅ counterparts. The trend is opposite to that expected based on the reduced mass effect alone even though the metal undergoes displacement in all normal coordinates except v₅(B₁) and v₇(B₂). The trend is consistent with Tc-F and Tc-O bond strengths that are lower than those of the rhenium analogue. Similar frequency decreases with decreasing mass have been noted for TcF₆/ReF₆, TcF₆⁻/ReF₆⁻, MoF₆/WF₆ and MoF₆⁻/WF₆⁻.¹⁵

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada for a research grant and for the award of postgraduate scholarships to N. L.

Footnotes

[†] All work involving ⁹⁹Tc was performed according to the regulations and recommendations of the Canadian Atomic Energy Control Board as outlined in AECB Radioisotope Safety Poster INFO-0142-1/Rev. 2, *Rules for Working with Radioisotopes in a Basic Laboratory*.

 \ddagger Similar results were reported in an earlier paper in which the reaction between TcO₃F and KrF₂ in HF was investigated.¹⁶ However, no products were isolated and the new ⁹⁹Tc resonance was mistakenly attributed to TcO_2F_3 , mainly because of the failure to observe the equatorial fluorine resonance at high frequency in the ¹⁹F NMR spectrum.

References

- 1 J. E. Till, R. W. Shor and F. O. Hoffman, *Environmental Effects of the Uranium Fuel Cycle*, ORNL/TM-9150 (NUREG-3738), 1984.
- 2 A. Engelbrecht and A.V. Grosse, J. Am. Chem. Soc., 1954, 76, 2042.
- 3 E. E. Aynsley, R. D. Peacock and P. L. Robinson, J. Chem. Soc., 1950, 1622.
- 4 H. Selig and J. G. Malm, J. Inorg. Nucl. Chem., 1963, 25, 349.
- 5 J. Binenboym, U. El-Gad and H. Selig, Inorg. Chem., 1974, 13, 319.
- 6 H. P. A. Mercier and G. J. Schrobilgen, Inorg. Chem., 1993, 32, 145.
- 7 R. J. Gillespie and J. W. Quail, *Proc. Chem. Soc.*, 1963, 278;
 L. G. Alexakos, C. D. Cornwell and S. B. Pierce, *Proc. Chem. Soc.*, 1963, 341;
 N. Bartlett and L. E. Levchuk, *Proc. Chem. Soc.*, 1963, 342.
- 8 N. Bartlett, N. K. Jha and J. Trotter, Proc. Chem. Soc., 1962, 277.
- 9 K. O. Christe and R. Bougon, J. Chem. Soc., Chem. Commun., 1992, 1056; K. O. Christe, D. A. Dixon, H. G. Mack, H. Oberhammer, A. Pagelot, J. C. P. Sanders and G. J. Schrobilgen, J. Am. Chem. Soc., 1993, 115, 11279.
- 10 H. H. Claassen, G. L. Goodman, J. C. Malm and F. Schreiner, J. Chem. Phys., 1965, 42, 1229.
- 11 J. Mason, in Multinuclear NMR, ed. J. Mason, Plenum, New York, 1987, ch. 2; J. C. P. Sanders and G. J. Schrobilgen, in A Methodological Approach to Multinuclear NMR in Liquids and Solids—Chemical Applications, ed. P. Granger and R. K. Harris, NATO Advanced Study Institute, Magnetic Resonance, Kluwer Academic, Dordrecht, 1990, ch. 11.
- 12 N. Bartlett, S. Beaton, L. W. Reeves and E. J. Wells, Can. J. Chem., 1964, 42, 2531.
- 13 A. S. Shalabi and E. M. Nour, Gazz. Chim. Ital., 1991, 121, 555.
- 14 J. H. Holloway, H. Selig and H. H. Claassen, J. Chem. Phys., 1971, 54, 4305.
- 15 J. Shamir and J. G. Malm, J. Inorg. Nucl. Chem., Suppl., 1976, 107.
- 16 K. J. Franklin, C. J. L. Lock, B. G. Sayer and G. J. Schrobilgen, J. Am. Chem. Soc., 1982, 104, 5303.

Received, 13th June 1996; Com. 6/04167A