First characterization of a compound with a tin-germanium double bond: the dimesityl(diisitylstanna)germene (Is)₂Sn=Ge(Mes)₂

Marie-Anne Chaubon, Jean Escudié,* Henri Ranaivonjatovo and Jacques Satgé

Hétérochimie Fondamentale et Appliquée, UPRES A associée au CNRS n° 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France

The dimesityl(diisitylstanna)germene 4 [isityl (Is) = 2,4,6-triisopropylphenyl] is synthesized by dehydrofluorination of the corresponding (fluorostannyl)germane 1 by *tert*-butyllithium at low temperature; its structure is evidenced at $-20\,^{\circ}\mathrm{C}$ by $^{119}\mathrm{Sn}$ NMR spectroscopy (δ + 360), by addition of water and methanol to the tin–germanium double bond and by a [2 + 2] cycloaddition with benzaldehyde; warming the stannagermene 4 to room temperature affords the dimesityl(tetraisityldistanna)germirane 8.

Dimetallaalkenes > M=M < with two identical heavy elements of group 14, such as disilenes, 1,2 digermenes 1,3 and distannenes 1 are now well known. By contrast, 'unsymmetrical' dimetallaalkenes > M=M' < , with two different group 14 elements, are still very rare since of the three possible classes of compounds > Ge=Si < , > Sn=Si < and > Sn=Ge < , only a germasilene [the tetramesity lgermasilene (Mes)₂Ge=Si(Mes)₂] has been obtained by Baines *et al.*⁴ by thermolysis or photolysis of the corresponding digermasilirane and characterized by ²⁹Si NMR spectroscopy and chemical trapping.

We present the first chemical and physicochemical characterization of the dimesityl(diisitylstanna)germene (Is)₂Sn=Ge(Mes)₂ **4** [isityl (Is) = 2,4,6-triisopropylphenyl, mesityl (Mes) = 2,4,6-trimethylphenyl].

This stannagermene was synthesized (Scheme 1) by dehydrofluorination of the (fluorostannyl)germane 1^{\ddagger} with Bu^tLi in Et₂O-toluene (30:70). The reaction was monitored by ¹¹⁹Sn NMR between -80 °C and room temperature. The lithio compound 2, formed immediately at -80 °C, was evidenced by a new signal {doublet due to the coupling with ¹⁹F [δ (¹¹⁹Sn)

$$(Mes)_{2}GeH_{2} \xrightarrow{1, Bu^{i}Li} (Is)_{2}Sn - Ge(Mes)_{2} \\ F H \\ 1 \\ Bu^{i}Li \\ \left[(Is)_{2}Sn - Ge(Mes)_{2} \right] \xrightarrow{Mel} (Is)_{2}Sn - Ge(Mes)_{2} \\ F Li F Me \\ 2 3 \\ -LiF \\ -LiF Me \\ 2 3 \\ -LiF \\ -LiF Me \\ 2 3 \\ -LiF Mes \\ 2 3 \\ -LiF Mes \\ 2 7 \\$$

Scheme 1

124.9, ${}^{1}J_{119SnF}$ 1650.5 Hz] whereas a doublet of doublets was observed for **1** (coupling with F and H)} and by quenching with methyl iodide to afford **3**.†‡ Addition of water regenerates **1** quantitatively.

When the reaction mixture was warmed to -20 °C, a new signal appeared at δ +360 in the ^{119}Sn NMR spectrum attributed to the stannagermene 4. The chemical shift lies, as expected, at low-field as in other doubly bonded tin derivatives substituted by two isityl groups on tin [e.g. (Is)₂Sn=Sn(Is)₂, δ + 427;6 (Is)₂Sn=PAr (Ar = 2,4,6-tri-tert-butylphenyl), δ +499.5;8 (Is)₂Sn=CR₂ (CR₂ = fluorenylidene), δ + 288;5 (Is)₂Sn=CR'₂ (CR'₂ = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene), δ + 710;9 see also ref 1(a) and 10 for δ (119Sn) of other doubly bonded tin compounds]. Orange–red solutions of 4 are air- and moisture-sensitive.

Compound 4 has been characterized by trapping reactions; thus, addition of methanol or water to an orange solution of 4 at $-20~^{\circ}\mathrm{C}$ caused immediate decoloration, with the formation of the (methoxystannyl)- or the (hydroxystannyl)-germanes 5† and 6 respectively†‡ [5, $\delta(^{119}\mathrm{Sn})$ -39.3; 5 is moisture-sensitive and gives 6 upon hydrolysis], [6, $\delta(^{119}\mathrm{Sn})$ -65.4, $\delta(^{1}\mathrm{H})$ 5.71 (s, GeH); v(GeH) 2024 cm $^{-1}$]. Only 5 and 6 were obtained and not the reverse regioisomers; one of the reasons for this regiospecific reaction is the polarity $\mathrm{Sn}^{\delta+}\mathrm{Ge}^{\delta-}$ of the tingermanium double bond, although this polarity is probably very low.

Addition of benzaldehyde affords the (3-oxa-2-stanna)germetane $7 \dagger \P$ in good yield (65%) by a [2 + 2] cycloaddition. A regiospecific reaction was observed with the sole formation of the four-membered heterocycle containing an Sn-O bond. This regiochemistry was established by the presence of an Is₂Sn-O fragment in the mass spectrum and by ¹³C NMR which revealed an ¹¹⁹Sn-O-C coupling constant of 26.6 Hz characteristic of $^2J_{SnC}$. ¹¹

Warming a solution of 4 at room temperature afforded the distannagermirane 8 along with other unidentified products. Owing to its low solubility, 8 was easily isolated from the reaction mixture by crystallization from pentane. The mechanism of the formation of 8 from the stannagermene 4 has not yet been elucidated: a disproportionation of 4 into stannylene $:Sn(Is)_2$ and germylene $:Ge(Mes)_2$ can be postulated (i) with further addition of stannylene to the Sn=Ge double bond, (ii) or with dimerisation of two stannylenes and addition of germylene to the Sn=Sn double bond. However head-to-head or head-totail dimerisations of 4 to the corresponding distannadigermetanes Ge-Ge-Sn-Sn or Ge-Sn-Ge-Sn followed by extrusion of germylene to give a three-membered ring cannot be excluded; of course such elimination would be more probable from the strained head-to-head dimer. Attempts to trap germylene: Ge(Mes)₂ failed, probably owing to the low temperature of the experiment. Mass spectrometry of 8 revealed two possible [2 + 1] decomposition routes of the three-membered ring: (a) $(Is)_2Sn=Sn(Is)_2 + :Ge(Mes)_2 \text{ and } (b) (Is)_2Sn=Ge(Mes)_2 +$:Sn(Is)₂. Route (b) is by far the most important, suggesting that the distannagermirane should, upon thermolysis, be a good precursor of stannagermene 4.

The study of the reactivity of this new tin-germanium double bond, which is of importance, is now under active investigation

Footnotes

- † Detailed physicochemical data [¹H, ¹³C, ¹³F and ¹¹¹Sn NMR, mass spectrometry (²⁴Ge, ¹²oSn), IR, elemental analysis, mp] and experimental procedures for compounds 1, 3, 5–8 are available from the authors upon request
- ‡ Î was synthesized by reaction of 8.5 mmol of $(\text{Is})_2 \text{SnF}_2^{5}$ [obtained from $(\text{Is}_2 \text{SnO})_3^6$ and HF] with 1 equiv. of $(\text{Mes})_2 \text{Ge}(\text{H}) \text{Li}^7$ prepared from $(\text{Mes})_2 \text{GeH}_2$ and $\text{Bu}^t \text{Li}$ in thf at -40 °C. 1 was separated from by-products, such as $(\text{Mes})_2 \text{GeH}_2$ and $(\text{Mes})_2 \text{Ge}(\text{H}) \text{Ge}(\text{H}) (\text{Mes})_2$, by fractional crystallization from pentane (mp 171 °C, yield = 31%). $\delta(^{119} \text{Sn})$ (ref. SnMe₄) -24.4 (dd, $^{1}J_{119}_{\text{SnF}}$ 2430.7, $^{2}J_{119}_{\text{SnH}}$ 217.2 Hz); $\delta(^{19} \text{F})$ (ref. CF₃CO₂H) -121.4; $\delta(^{11} \text{H})$ 5.79 [d, $^{3}J_{\text{FH}}$ 20.8 Hz, GeH); IR 2018.3 cm $^{-1}$ [v(GeH)]; MS (EI), m/z 837 (M F, <1), 645 [(Is)₂Sn(Mes), 1], 545 [(Is)₂SnF, 4], 526 [(Is)₂Sn, 22], 322 [(Is)Sn-H, 100], 313 [(Mes)₂GeH, 10]; Anal. Calc. for C₄₈H₆₉FGeSn: C, 67.32, H, 8.12. Found: C, 67.24; H, 8.53%.
- 3: $\delta(^{119}\text{Sn}) 29.9$ (d, $^{1}J_{119}\text{SnF}$ 2411.4 Hz); $\delta(^{1}\text{H})$ 1.33 (d, $^{4}J_{\text{FH}}$ 2.6 Hz, Me); $\delta(^{13}\text{C})$ 7.00 (d, $^{3}J_{\text{FC}}$ 6.4 Hz, Me); $\delta(^{19}\text{F}) 118.9$; MS (DCI–CH₄, ^{74}Ge , ^{120}Sn): 526 [(Is)₂Sn, 1]; 346 [(Mes)₂Ge(Me)F, 9], 327 [(Mes)₂GeMe, 47], 227 [(Mes)Ge(Me)F, 100]. Anal. Calc. for C₄₉H₇₁FGeSn: C, 67.62, H, 8.22. Found: C, 67.32; H, 8.27% 6: $\delta(^{119}\text{Sn}) 65.4$; $\delta(^{1}\text{H})$ 5.71 (s, GeH); IR 2024 cm⁻¹ [v(GeH)]; MS (EI); m/z 854 (M, 1); 837 (M OH, 1), 645[(Is)₂Sn(Mes), 2], 543[(Is)₂Sn(OH), 28], 526 [(Is)₂Sn, 50], 322 [(Is)Sn H, 100].
- § Mass spectrometry of 1, 6 and 7 displays $(Is)_2Sn(Mes)$ fragments due to migration of a mesityl group from germanium to tin. Similar migrations of mesityls from germanium to silicium⁴ or to germanium¹² have been reported. In 7, migration of isityl from tin to germanium is also observed. ¶ 7: mp 92 °C; $\delta(^{119}Sn)$ 69.7; $\delta(^{14}H)$ 6.53 (s, OCH); $\delta(^{13}C)$ 91.68 $(^{2}J_{119}S_{nC})$ 26.6 Hz, OCH). The two methyls of each Pri group, as well as the two isityl groups, are diastereotopic; thus four doublets (6 H each) are observed for the methyls of the o-Pri groups. For the methyls of p-Pri groups only two doublets (instead of the four expected) are observed due to their large distance from the chiral centre. The two mesityl groups are also diastereotopic: thus four singlets are observed for the methyls. MS (EI), m/z 645 $[(Is)_2Sn(Mes), 1]$, 598 $[(Is)_2SnGe, 4]$, 555 $[(Is)_2Sn(OCH), 3]$, 542 $[(Is)_2SnO, 1]$, 524 $[(Is)_2Sn 2H, 5]$, 514 [(Is)SnGe(Mes), 6], 478 $[(Is)_2Ge$

- 2H, 9], 396 [(Is)SnGe + H, 49], 353[(Is)Sn(OCH) + H, 7], 322 [(Is)Sn-H, 50], 277 [(Is)Ge, 100].
- **§** 8: mp 142 °C; δ (119Sn) -361.6 ($^{1}J_{119Sn^{117}Sn}$ 1440 Hz) {a similar high field chemical shift was observed for the tristannirane [(Is)₂Sn]₃⁶}. Because of the significant steric congestion, hindered rotation is observed for the Is groups; thus eight doublets (6 H each) are observed for the *o*-methyls of the Pri groups and two doublets (12 H each) for the *p*-methyls. MS (FAB), m/z 1050 [(Is)₂SnSn(Is)₂, 1], 836 [(Is)₂SnGe(Mes)₂, 45], 644 [(Is)SnSn(Is), 11], 525 [(Is)₂Sn H, 100].

References

- 1 For reviews on stable > M=M < compounds, see (a) M. A. Chaubon, H. Ranaivonjatovo, J. Escudié and J. Satgé, *Main Group Met. Chem.*, 1996, **19**, 145; (b) T. Tsumuraya, S. A. Batcheller and S. Masamune, *Angew. Chem.*, *Int. Ed. Engl.*, 1991, **30**, 902.
- 2 R. West, Angew. Chem., Int. Ed. Engl., 1987, 26, 1201; M. Weidenbruch, Coord. Chem. Rev., 1994, 130, 275; G. Raabe and J. Michl, in The Chemistry of Organic Silicon Compounds, ed. S. Patai and Z. Rappoport, Wiley, 1989, ch. 17, p. 1015.
- 3 J. Escudié, C. Couret, H. Ranaivonjatovo and J. Satgé, Coord. Chem. Rev., 1994, 130, 427.
- K. M. Baines and J. A. Cooke, Organometallics, 1991, 10, 3419; 1992,
 3487; K. M. Baines, J. A. Cooke, C. E. Dixon, H. W. Liu and M. R. Netherton, Organometallics, 1994, 13, 631; K. M. Baines,
 J. A. Cooke and J. J. Vittal, Heteroatom Chem., 1994, 5, 293.
- 5 G. Anselme, H. Ranaivonjatovo, J. Escudié, C. Couret and J. Satgé, Organometallics, 1992, 11, 2748.
- 6 S. Masamune and L. R. Sita, J. Am. Chem. Soc., 1985, 107, 6390.
- 7 A. Castel, P. Rivière, J. Satgé and Y. H. Ko, J. Organomet. Chem., 1988, 342, C1.
- 8 H. Ranaivonjatovo, J. Escudié, C. Couret and J. Satgé, J. Chem. Soc., Chem. Commun., 1992, 1047.
- 9 A. Schäfer, M. Weidenbruch, W. Saak and S. Pohl, J. Chem. Soc., Chem. Commun., 1995, 1157.
- 10 A. Kandri Rodi, H. Ranaivonjatovo, J. Escudié and A. Kerbal, Main Group Met. Chem., 1996, 19, 199.
- 11 B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 1985, 16, 73.
- T. Tsumuraya, Y. Kabe and W. Ando, J. Organomet. Chem., 1994, 482, 131.

Received, 18th July 1996; Com. 6/050371