An extremely fast and efficient acylation reaction of alcohols with acid anhydrides in the presence of trimethylsilyl trifluoromethanesulfonate as catalyst

Panayiotis A. Procopiou,* Simon P. D. Baugh, Stephen S. Flack and Graham G. A. Inglis

Glaxo Wellcome Research and Development Ltd., Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK SGl2iW

Alcohols are converted to esters in a fast, clean and efficient reaction with acid anhydrides in the presence of trimethylsilyl trifluoromethanesulfonate.

Trimethylsilyl trifluoromethanesulfonate (TMSOTf) in the presence of acetic anhydride has been used for the selective cleavage of the ring carbon-oxygen bond of methyl β -Dglycopyranosides, and for the replacement of the anomeric methoxy group of methyl α -D-pyranosides by an acetoxy group with concomitant peracetylation of the free hydroxy groups.^{1,2} This methodology has been subsequently extended by Fraser-Reid to the acetolysis of 1,6-anhydro sugars in acetic anhydride using triethylsilyl trifluoromethanesulfonate as catalyst.³ During our studies of the squalestatins, the fungal metabolites which are potent inhibitors of squalene synthase,⁴ we attempted the cleavage of the ketal moiety of the dimethyl ester 1 with Ac₂O-TMSOTf. No cleavage of the ketal group was observed; however, to our astonishment, a clean and extremely fast conversion to the diacetate 2 had occurred. Considering the complexity of the substrate and the fact that the reaction was over in 5 min at 0 "C, whereas the analogous reaction catalysed by 4-(dimethy1amino)pyridine (DMAP) required several hours at 20 "C to go to completion, we decided to exploit the potential of this new methodology for the acylation of a variety of alcohols.

Treatment of the primary alcohols octadecan-1-ol 3 and 3-phenylpropan-1-ol $\hat{4}$ with Ac₂O (1.5 equiv.) and TMSOTf (2) mol%) in CH_2Cl_2 at 0 °C provided the corresponding acetate esters *5* and 6 in quantitative yield in 30 s! (Table 1, entries *2* and 3).

Treatment of the secondary alcohols 3β -cholestanol 7 and 3β-cholesterol 8 with Ac₂O (1.5 equiv.) and TMSOTf (2 mol%) in CH_2Cl_2 at 20 °C provided the corresponding acetates 9 and 10 in 2 min and in excellent yields (entries **4** and 5). Similarly high yields were obtained with $(+)$ - $(1S, 2R, 5S)$ -menthol 11 and $(S)-1$ -phenylethanol 12 to provide the corresponding acetates 13 and 14 respectively (entries 6 and 7). Furthermore, fluocinolone acetonide **l5** possessing a primary and a hindered axial secondary alcohol group was acetylated within 30 min to give the diacetate 16 in 99% yield (entry 8). Moreover, ergocalciferol 17 was acetylated in 5 min to give the acetate 18 (entry 9).

Tertiary alcohols are also cleanly, efficiently and rapidly converted using 2 mol% TMSOTf and Ac_2O in CH_2Cl_2 . Thus, treatment of 3-methylpent-l-yn-3-01 19 gave the acetate 20 $(> 80\%)$, whereas the squalestatine derivative 21 provided diacetate 22 (98%) (entries 10 and 11).

Finally, the acylation of menthol with acid anhydrides other than acetic was examined. Thus, (+)-menthol 11 was reacted with propionic, isobutyric and pivalic anhydrides to give the corresponding esters 23,24 and 25 respectively (entries 12-14) in excellent yields. Finally, acylation of diol 26 possessing the hindered 11 β - and 17 α -hydroxy groups with propionic anhydride (entry 15) gave the 17β -mixed anhydride of the dipropi-

onate ester 27 in 94% yield, which upon ammonolysis gave 27 in 55% yield.

In conclusion, we have described a mild, highly efficient **and** extremely fast acylation procedure for **a** variety of functionalised alcohols using a catalytic amount of TMSOTf and acid anhydrides. This method is much faster than the now standard method of Steglich⁵ utilising DMAP. Furthermore our method is very clean, and chromatography is not necessary, as all the by-products are water soluble and are removed upon aqueous work-up. Recent procedures for the acylation of alcohols by acid anhydrides include the tributylphosphine- catalysed method of Vedejs,⁶ and the Lewis acid-catalysed methods of Mukaiyama.7.8 Mukaiyama has also reported a novel esterification of carboxylic acids and alcohols in the presence of octamethylcyclotetrasiloxane and a catalytic amount of titanium(1v) chloride **tris(trifluoromethanesulfonate).9** Very recently a procedure similar to ours but utilising a catalytic amount of scandium trifluoromethanesulfonate as Lewis acid instead of TMSOTf has been described by Yamamoto.10 The cost of TMSOTf, however, is a fraction of that of scandium trifluoromethanesulfonate, which makes the current procedure very attractive indeed.

Table 1 Acylation of alcohols with acid anhydrides in the presence of TMSOTfa

Entry		(RCO) ₂ O Alcohol (equiv.)	Product	TMSOTf $(mol\%)$		T /°C t/min (%)	Yield
		$Ac2O$ (solvent)	2	3	0	5	95
2	3	$Ac_2O(1.5)$	5	2	0	0.5	100
3	4	$Ac_2O(1.5)$	6	2	0	0.5	100
4	7	$Ac_2O(1.5)$	9	2	20	2	98
5	8	$Ac_2O(1.5)$	10	2	20	2	88
6	11	$Ac_2O(1.5)$	13	2	θ	5	95
7	12	$Ac_2O(1.5)$	14	2	θ	5	95
8	15	Ac ₂ O(6)	16	4	20	30	99
9	17	Ac ₂ O(3)	18	2	0	5	71
10	19	$Ac_2O(2)$	20	2	0	60	> 80
11	21	$Ac2O$ (solvent)	22	3	0	5	98
12	11	(EtCO) ₂ O(3)	23	2	20	10	91
13	11	$(Pr^iCO)_2O(3)$	24	2	20	10	91
14	11	(Bu ^t CO) ₂ O(3)	25	2	20	10	95
15	26	(EtCO) ₂ O(9)	27	2	20	120	55

a **Typical experimental procedure. A solution of alcohol (1 mmol) in CH2C12 (2 cm3) was treated with acetic anhydride (0.14 cm3, 1.5 mrnol) at** 0 °C, followed by a CH₂Cl₂ solution of trimethylsilyl trifluoromethane**sulfonate (1 mol dm-3, 0.02 cm3). The reaction upon completion (TLC) is treated with saturated aq. NaHC03, and the aqueous phase was extracted** with CH_2Cl_2 . The organic extracts were washed with aq. NaHCO₃ (\times 3) **and water, dried and the solvent evaporated. Generally, the products are very clean and do not require any further purification, unless a large excess of anhydride was used, in which case percolation through silica gel removed any trace of anhydride.**

References

- 1 P. Angibeaud and J.-P. Utille, *J. Chem.* Soc., *Perkin Trans. I,* 1990, 1490.
- 2 P. Angibeaud, *C.* Bosso and J.-P. Utilie, *Carbohydr. Res.,* 1990, 198, 403.
- 3 M. Zottola, V. Rao and B. Fraser-Reid, J. *Chem. Soc., Chem. Commun.,* 1991,969.
- 4 N. **S.** Watson and P. A. Procopiou, *Squalene Synthase Inhibitors: Their Potential as Hypocholesterolaemic Agents,* in *Progress in Medicinal Chemistry,* ed. G. P. Ellis and D. K. Luscombe, Elsevier, Amsterdam, 1996, VO~. 33, ch. 7, **pp.** 331-378.
- *5* G. Hofle, W. Steglich **and H.** Vorbriiggen,Angew. *Chem., Int. Ed. Engl.,* 1978, 17, 569.
- 6 E. Vedejs, N. **S.** Bennett, L. **M.** Conn, **S. T.** Diver, M. Gingras, **S.** Lin, P. A. Oliver and M. J. Peterson, J. *Org. Chem.,* 1993, 58, 7286.
- 7 T. Mukaiyama, I. Shiina **and** M. Miyashita, *Chem. Lett.,* 1992, 625.
- **8** I. Shiina, **S.** Miyoshi, M. Miyashita and T. Mukaiyama, *Chem. Lett.,* 1994,515.
- 9 J. Izumi, I. Shiina and T. Mukaiyama, *Chem. Lett.,* 1995, 141.
- 10 K. Ishihara, M. Kubota, H. Kurihara **and** H. Yamamoto, J. *Org. Chem.,* 1996, 61,4560.

Received, 5th September 1996; Corn. 61061 071