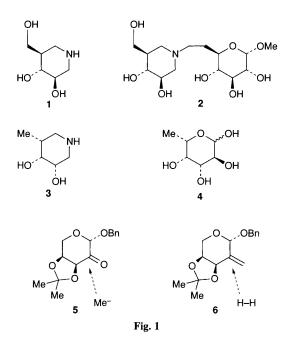
Synthesis of a new potent α -fucosidase inhibitor

Anja Hansen,^a Tina M. Tagmose^a and Mikael Bols*^b†

^a Department of Organic Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark

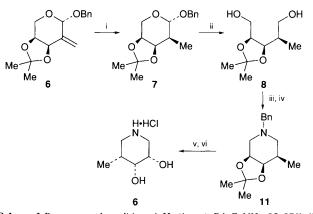

^b Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus, Denmark

Enantiomerically pure (3S,4R,5R)-3,4-dihydroxy-5-methylpiperidine was prepared from L-arabinose and found to be a potent human placenta α -fucosidase inhibitor.

Recently we discovered that the 1-azamonosaccharide isofagomine 1, a D-glucose derivative with a nitrogen in place of the anomeric carbon, is a potent inhibitor of glucosidases.¹ Perhaps even more significant, 1 is also an important building block that can be elaborated at the nitrogen to create more selective inhibitors such as 2, which has a K_i of 6.3 \times 10⁻⁸ M on glucoamylase.² Other 1-azamonosaccharides have also been found to be potent glycosidase inhibitors.^{3,4} From this information we conceived the idea that the L-fucose analogue of 1, compound 3, might inhibit α -fucosidase. L-Fucose 4 is a very common and important sugar in glycoproteins and glycans, and the ability to inhibit α -fucosidase and create highly selective α fucosidase inhibitors could be very valuable in the treatment of a number of diseases, e.g. AIDS⁵ and cancer,⁶ where affecting glycoprotein processing is crucial. Here we report the enantiospecific synthesis of the new compound (3S, 4R, 5R)-3,4-dihydroxy-5-methylpiperidine 3, a potent and selective α -fucosidase inhibitor.

The enantioselective synthesis of 3 was not straightforward, as the compound is carbohydrate-like but contains a branched carbon-chain that had to be synthesised in a stereoselective fashion. Obviously no elements of the synthesis of 1 could be used as the stereochemistry of the two compounds were entirely different.

Our synthetic plan relied on the information that the β -face of benzyl 3,4-*O*-isopropylidene- β -L-*erythro*-pent-2-ulopyranoside **5** was the less hindered side, shown by the fact that methyllithium adds selectively from the β -side⁷ (Fig. 1). We could therefore expect that the known alkene **6**⁸ would be



stereoselectively hydrogenated from the β -side giving the required α -methyl group.

Alkene 6 was prepared in 4 steps from L-arabinose, essentially as described previously.^{7–8} Hydrogenation of 6 in EtOAc with 1 atm of H_2 over 5% palladium on carbon as catalyst, with NH₃ present (20 °C, 18 h, [7] = 33 mM, $[NH_3] = 0.13 \text{ M}, \text{Pd-C} 3.6 \text{ mg ml}^{-1}$ to avoid debenzylation, gave the hoped-for stereoselective formation of 7 in 95–97% vield[‡] (Scheme 1). The stereochemistry at C-2 was confirmed from the ¹H NMR spectrum, where a large coupling of 7.5 Hz between H-1 and H-2 was observed, showing that these protons were diaxial. Subsequent reduction of 7 using 8 equiv. of sodium in MeOCH₂CH₂OMe-liquid ammonia (1:6) gave directly diol 8 in 51% yield (-78 °C, 3 h, [7] = 0.05 M). When less sodium or no co-solvent was used, mixtures of 8 and the intermediate of the reaction, the hemiacetal 9, were obtained.§ Ditosylation of 8 using 2.5 equiv. of toluene-p-sulfonyl chloride (TsCl) in pyridine $(5 \, ^{\circ}C, 21 \, h, [8] = 0.24 \, M, [TsCl] = 1.2 \, M)$ gave 10 in 62% yield. Reaction of 10 with excess neat benzylamine at 40 °C for 2 days ([10] = 0.1 M), as described for other carbohydrate ditosylates,⁹ gave piperidine 11 in 76% yield. Reaction of 11 with aqueous TFA ([11] = 0.05 M) for 1.5 h at 25 °C removed the acetonide. Finally, hydrogenation of the product in 1 M HCl solution under 1 atm of H₂ with 10% Pd-C as catalyst (20 °C, [S] = 0.03 M, Pd–C 10 mg ml⁻¹) for 3 days gave 3 in 69% yield.

Piperidine 3 was tested for inhibition of α -fucosidase from human placenta catalysing the hydrolysis of 4-nitrophenyl α -Lfucopyranoside at 26 °C.|| At pH 7.5, 3 showed competitive inhibition of the enzyme with a dissociation constant K_i of 6.4 μ M. Inhibition of 3 was selective, as α -glucosidase from baker's yeast and β -galactosidase from *E. Coli* were unaffected by the compound in concentrations below 1 mM, while the K_i *versus* β -glucosidase from almonds was 121 μ M.

In conclusion, we have synthesised a new, potent and selective human α -fucosidase inhibitor. It will be interesting to investigate the anti-viral and anti-tumor activity of **3**. Future work will also explore the fascinating possibilities of modifying

Scheme 1 *Reagents and conditions*: i, H₂ (1 atm), Pd–C, NH₃, 95–97%; ii, Na (8 equiv.) NH₃, 81%; iii, TsCl (2.5 equiv.), pyridine, 62%; iv, BnNH₂, 76%; V, TFA–H₂O; vi, H₂, Pd–C, 1 M HCl, 69% from **11**

Chem. Commun., 1996 2649

3 at the anomeric nitrogen to create selective inhibitors for some of the highly substrate-specific fucosidases.

We acknowledge financial support from the Danish National Science Research Council (SNF) grant No. 0502986. We also thank J. Ø. Madsen and B. O. Pedersen for mass spectra.

Footnotes

† E-mail: mb@kemi.aau.dk

* Selected data for 7: $[\alpha]_{D}^{22} - 104.6$ (c 0.7, CHCl₃); m/z (EI) 278 (M⁺). For **8**: $[\alpha]_{D}^{22} - 60.9$ (c 1.00, CHCl₃); m/z (CI) 208 (M + NH₄⁺). For **9**: mp 55–57 °C; $[\alpha]_{D}^{22} 42.4$ (c 4.2, CHCl₃); m/z (CI) 189 (M + H⁺). For **10**: $[\alpha]_{D}^{22} - 16.5$ (c 1.14, CHCl₃); m/z (CI) 516 (M + NH₄⁺). For **11**: $[\alpha]_{D}^{22} - 25.3$ (c 0.1, CHCl₃); m/z (EI) 261 (M⁺).

§ These mixtures could be converted to pure **8** with NaBH₄ in EtOH. ¶ *Selected data* for **3**: $[\alpha]_D^{25}$ –6.3 (*c* 0.75, H₂O); *m/z* (EI) 131 (M⁺); ¹H NMR (D₂O): δ 3.8–3.95 (m, 2 H, H-3 and H-4), 3.2 (dd, 1 H, *J* 3 and 11 Hz), 3.0 (dd, 1 H, *J* 4 and 12.5 Hz), 2.9 (t, 1 H, *J* 11 Hz), 2.7 (t, 1 H, *J* 12.5 Hz), 2.0 (m, 1 H, H-5), 0.9 (d, 3 H, *J* 6.5 Hz, Me); ¹³C NMR (D₂O): δ 72.2 and 68.7 (C-3 and C-4), 45.8 and 44.4 (C-2 and C-6), 34.4 (C-5), 16.5 (C-5').

|| The assay was performed as follows: Samples were prepared by mixing 1 ml sodium phosphate buffer (pH 7.5), 0.2 to 0.8 ml of a 5 mM solution of 4-nitrophenyl α -L-fucopyranoside in water, 10 μ l of a 9 mM solution of 6 (or nothing) and distilled water to a total volume of 1.9 ml. Reaction was started by adding 0.1 ml of a 0.04 unit ml⁻¹ solution of α -fucosidase from human

placenta (EC 3.2.1.51, Sigma F-6151) and was followed for 10 min at 26 °C by measuring absorbance at 400 nm. Initial velocities were calculated from the slopes and used to construct a Lineveawer–Burk plot from which $K_{\rm ms}$ and, subsequently, $K_{\rm i}$ were obtained.

References

- 1 T. M. Jespersen, W. Dong, M. R. Sierks, T. Skrydstrup, I. Lundt and M. Bols, Angew. Chem., Int. Ed. Engl., 1994, 33, 1778.
- 2 W. Dong, T. M. Jespersen, T. Skrydstrup, M. Bols and M. R. Sierks, Biochemistry, 1996, 35, 2788.
- 3 Y. Ichikawa and Y. Igarashi, Tetrahedron Lett., 1995, 36, 4585.
- 4 Y. Igarashi, M. Ichikawa and Y. Ichikawa, *Tetrahedron Lett.*, 1996, **37**, 2707.
- 5 T. Feizi and M. Larkin, Glycobiology, 1990, 1, 17.
- 6 R. J. Bernacki, M. J. Niedbala and W. Korytnyk, *Cancer and Metastasis Rev.*, 1985, 4, 81.
- 7 R. E. Ireland, L. Courtney and B. J. Fitzsimmons, J. Org. Chem., 1983, 48, 5186.
- 8 R. C. Petter and D. G. Powers, Tetrahedron Lett., 1989, 30, 659.
- 9 A. E. McCaig, B. Chomier and R. H. Wightman, J. Carbohydr. Chem., 1994, 13, 397.

Received, 28th August 1996; Com. 6/05980E