Stereochemistry of the oxidation of gibberellin 20-alcohols, GA15 and GA44, to 20-aldehydes by gibberellin 20-oxidases

Jane L. Ward,*a* **Graham J. Jackson,***a* **Michael H. Beale,****a* **Paul Gaskin,***a* **Peter Hedden,***a* **Lewis N. Mander,***a* **Andrew L. Phillips,***a* **Hideharu Seto,***b* **Manuel Talon,***c* **Christine L. Willis,***d* **Theresa M. Wilson***c* **and Jan A. D. Zeevaart***c*

a IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, UK BS18 9AF

b Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia

c MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

d School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS

$(20R)$ - and $(20S)$ - $[20-2H_1]$ -gibberellins A_{15} and A_{44} have **been used to determine the stereochemistry of the conversion to the 20-aldehyde catalysed by gibberellin 20-oxidases.**

The stepwise oxidation and subsequent removal of carbon-20 from C_{20} -precursors is one of the most important sequences of reactions in the biosynthesis of biologically active C_{19} gibberellin (GA) plant hormones (Scheme 1). This conversion is unusual in that carbon-20 is lost at the aldehyde oxidation level in a reaction which also involves concerted formation of the 19,10-lactone function, a characteristic structural feature of the C_{19} -GAs, such as GA₉ and GA₂₀. The 20-carboxylic acid is also a biosynthetic product, but is not an intermediate in C_{19} -GA formation. Genes encoding GA 20-oxidases have been cloned from several plants.1–5 These enzymes are 2-oxoglutaratedependant dioxygenases, an important class of soluble, FeIIcontaining oxygenases .6 Functional expression of GA 20-oxidase clones in *E. coli* has provided the means for a detailed study of the mechanism. Although studies in cell-free systems of spinach7 indicated that more than one enzyme may be involved in the conversion of 20-methyl compounds *via* the 20-alcohol and 20-aldehyde to the C_{19} -lactone, all GA 20-oxidases so far cloned are able to convert substrates with 20-methyl functions through to C_{19} -lactones and/or 20-carboxylic acids.

Here we report studies on the stereochemistry of the conversion of the 20-alcohol to the 20-aldehyde. Results are compared in cell-free systems from spinach with those obtained using recombinant enzyme from high-level expression of the *Arabidopsis thaliana* GA 20-oxidase clone At23532 in *E. coli* using the pET9d vector;† this enzyme converts GA_{12} to GA_9 in high yield.

The syntheses of $(20R)$ - and $(20S)$ - $[20$ -²H]-GA₁₅ are summarised in Scheme 2. The route relies on the use of bulky *tert*butyldiphenylsilyl (TBDPS) protecting groups to distinguish between the alcohol functions in the triol **1**, allowing manipulation of C-20, the most sterically hindered of the three hydroxymethyl groups. Triol 1 and its $[^{2}H_{6}]$ -isotopomer 1a were prepared by $LiAlH₄ (LiAlD₄)$ reduction of $GA₂₅$ trimethyl ester, itself prepared by deoxygenation of GA_{13} trimethyl ester.

Treatment of **1** with TBDPSCl and imidazole gave the 7,19-*bis*-TBDPS derivative **2** in high yield. Swern oxidation of **2** gave the 20-aldehyde **3**. Reduction of the aldehyde with NaBD4 was stereoselective (see later) and returned the [20-2H1]-alcohol **4**, which was protected as the acetate, before removal of the TBDPS groups with Bu4NF to give 7,19-diol **5**. Oxidation to the 7,19-dicarboxylic acid **6** followed by hydrolysis yielded $(20R)$ -[20-²H]GA₁₅ (d₁-65%, d₀-35%), in the lactone form **7**. The corresponding (20*S*) isomer **8** (d_1 -99%, d_0 -1%), was prepared in an analogous way from **1a,** reducing the 20-deuterio-aldehyde **3a** with NaBH4 as shown in Scheme 2.

The configurations of **7** and **8** were assigned by 1H NMR spectroscopy. In fully protio species, the 20-hydrogens resonate at d 4.12 (d, *J* 12.5 Hz) and 4.48 (dd, *J* 12.5 and 2.5 Hz). The downfield signal was assigned to the 20-*proR* proton by virtue of the long range W-coupling (2.5 Hz) to 1 β -H, as confirmed by a difference NOE experiment, which revealed a clear NOE from 6-H to the signal at δ 4.48 and the absence of any enhancement of the upfield doublet at δ 4.12, assigned to the 20-*proS* hydrogen. Both **7** and **8** were labelled stereospecifically.

The corresponding $[20-²H₁]$ isotopomers of the 13-hydroxylated gibberellin, GA₄₄ 9 and 12, were synthesised as shown in

Scheme 1 Reactions catalysed by GA-20-oxidases

Scheme 2 Synthesis of (20*R*)- and (20*S*)-[20-2H1]-GA15. *Reagents*: i, KH, CS₂, MeI; ii, Bu₃SnH; iii, LiAlH₄; iv, LiAl²H₄; v, Bu¹Ph₂SiCl, imidazole; vi, (COCl)₂, Me₂SO, Et₃N; vii, NaB²H₄; viii, NaBH₄; ix, Ac₂O, pyridine; x, Bu₄N+F⁻; xi, Jones oxidn; xii, NaOH, aq. MeOH.

Scheme 3 Synthesis of (20*R*)- and (20*S*)-[20-2H₁]-GA₄₄ *via* GA₁₉. *Reagents*: i, NaB²H₄; ii, NaOH, aq. MeOH; iii, ²H₂O, K₂CO₃; iv, KH, DMF, THF, O_2 ; v, CH_2N_2 ; vi, Dowex 50W(H+); vii, NaBH₄.

Scheme 3. $(20R)$ - $[20$ -²H₁]-GA₄₄ **9** $(d_1$ -95%, d_0 -5%) was produced by NaBD4 reduction of GA19 dimethyl ester followed by hydrolysis of the esters $(2 \text{ mol dm}^{-3}$ aq. NaOH–MeOH, $1 : 1$, reflux, 2 h). For the synthesis of $(20\hat{S})$ - $[20\text{-}2H_1]\text{-}GA_{44}$, the starting point was ketone **10**, an intermediate in the synthesis⁸ of $GA₁₉$. Deuterium exchange at C-20, oxidative cleavage⁸ and methylation gave $[20-2H_1]$ -GA₁₉ dimethyl ester, 13-methoxymethyl ether **11**. Deprotection at C-13 and then reduction of the aldehyde followed by demethylation gave the required (20*S*)- $[20-2H_1]$ -GA₄₄ **12** (d₁-61%, d₀-39%). The stereochemistry at C-20 was assigned by 1H NMR spectroscopy as above.

Incubation of unlabelled GA_{15} , as the lactone or as the 20-hydroxy-19-carboxylic acid ('open lactone'),‡ with recombinant At2353 20-oxidase and analysis of the products by GC– MS revealed that only the open lactone was accepted as a substrate by the enzyme. A similar result has been obtained in

Table 1 Deuterium incorporations in enzymic products

Substrate	$d_1 : d_0(\%)$	Enzyme	Product	$d_1 : d_0(\%)^a$
$7(20R)$ Open lactone	65:35	At2353	GA_{24}	0:100
8 (20S) Open lactone	99:1	At2353	GA_{24}	97:3
$9(20R)$ Open lactone	95:5	At2353	GA_{19}	0:100
12 (20S) Open lactone	61:39	At2353	GA_{19}	50:50
$9(20R)$ Lactone	95:5	Spinach	GA_{19}	85:15
$12(20S)$ Lactone	61:39	Spinach	GA_{19}	13:87

^a GA24 and GA19 were identified by GC–MS comparison (KRI and spectra), as Me or Me, Me₃Si derivatives, with authetic samples. Due to weak molecular ions isotope enrichments were calculated on $M^+ - 32$ (m/z 342) for GA₂₄ and M⁺ $-$ 28 (*m*/*z* 434) for GA₁₉.

cell-free systems from *C. maxima* endosperm9 and pea cotyledons,10 whereas homogenates of spinach leaves oxidise the closed-lactone form of GA_{44} .⁷ Although the product of metabolism of GA_{15} open lactone was mainly GA_9 , under short incubation times§ the intermediate 20-aldehyde $GA₂₄$ was readily detectable by GC–MS.

Incubation§ of $(20R)$ - and $(20S)$ - $[20-2H_1]$ - GA_{15} **7** and **8**, and GA44 **9** and **12** in the open-lactone form‡ with recombinant enzyme and GC–MS analysis of the 20-aldehyde $(GA_{24}$ and $GA₁₉$, respectively) products, revealed that, for both $GA₁₅$ and GA44 substrate, there is stereospecific loss of the 20-*proR* hydrogen (Table 1). In contrast, incubation of **9** and **12,** in the closed-lactone form, with the spinach cell-free system7 and analysis of the 20-aldehyde (GA_{19}) produced showed that, in this case, the 20-*proS* hydrogen is lost (Table 1). Thus, this cellfree system contains an enzyme that is capable of oxidising C-20, presumably in the lactone form, and it does so with the opposite stereochemistry to that observed with the recombinant *A. thaliana* protein, which only accepts the open-lactone form. In the lactone form, the 20-*proR* hydrogen is fixed in a severely sterically hindered position under ring B and, thus, it is not surprising that the lactone 20-oxidase, present in spinach, removes the 20-*proS* hydrogen. However, in the enzymes that accept only the 'open-lactone' form, the substrate presumably is held such that the 20-*proR* hydrogen is more exposed.

Footnotes

† Full details of the functional expression and characterisation of GA 20-oxidases will be reported elsewhere.

‡ The lactone-opened form of 20-hydroxymethyl GAs was produced by treatment with $2 \text{ mol } dm^{-3}$ NaOH.

§ Recombinant enzyme incubations were carried out in a total volume of 100 μ l of TrisCl buffer (1 mol dm⁻³, pH 7.5) containing 70 μ l enzyme preparation [45% pure enzyme (estimated from SDS gel), 2.5 mg protein ml⁻¹]. GA substrate (5 µg), 2-oxoglutarate (8 mmol dm⁻³), ascorbic acid (8 mmol dm⁻³), dithiothreitol (8 mmol dm⁻³), FeSO₄(1 mmol dm⁻³), catalase (2 mg ml⁻¹) and bovine serum albumin (4 mg ml⁻¹).

References

- 1 T. Lange, P. Hedden and J. E. Graebe, *Proc. Natl. Acad. Sci. USA*, 1994, **91**, 8552.
- 2 A. L. Phillips, D. A. Ward, S. Uknes, N. E. J. Appleford, T. Lange, A. K. Huttly, P. Gaskin, J. E.Graebe and P. Hedden, *Plant Physiol*., 1995, **108**, 1049.
- 3 Y-L. Xu, L. Li, K. Wu, A. J. M. Peeters, D. A. Gage and J. A. D. Zeevaart, *Proc. Natl. Acad. Sci*. *USA*, 1995, **92**, 6640.
- 4 K. Wu, D. A. Gage and J. A. D. Zeevaart, *Plant Physiol.* 1996, **110**, 547.
- 5 D. N. Martin, W. M. Proebsting, T. D. Parks, W. G. Dougherty, T. Lange, M. J. Lewis, P. Gaskin and P. Hedden, *Planta*, 1996, **200**, 159.
- 6 A. G. Prescott and P. John, *Ann. Rev. Plant Physiol. Plant Mol. Biol.*, 1996, **47**, 245.
- 7 S. J. Gilmour, J. A. D. Zeevaart, L. Schwenen and J. E. Graebe, *Plant Physiol*., 1986, **82**, 190.
- 8 R. D. Dawe, L. N. Mander and J. V. Turner, *Tetrahedron Lett.*, 1985, **26**, 363.
- 9 P. Hedden and J. E. Graebe, *J. Plant Growth Regul.,* 1982, **1**, 105.
- 10 Y. Kamiya, Y. Takahashi and J. E. Graebe, *Planta,* 1986, **169**, 524. *Received, 6th September 1996; Com. 6/06158C*

14 *Chem. Commun***., 1997**