Stereochemistry of the oxidation of gibberellin 20-alcohols, GA₁₅ and GA₄₄, to 20-aldehydes by gibberellin 20-oxidases

Jane L. Ward,^{*a*} Graham J. Jackson,^{*a*} Michael H. Beale,^{**a*} Paul Gaskin,^{*a*} Peter Hedden,^{*a*} Lewis N. Mander,^{*a*} Andrew L. Phillips,^{*a*} Hideharu Seto,^{*b*} Manuel Talon,^{*c*} Christine L. Willis,^{*d*} Theresa M. Wilson^{*c*} and Jan A. D. Zeevaart^{*c*}

^a IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, UK BS18 9AF

^b Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia

^c MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

^d School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS

(20R)- and (20S)- $[20-^2H_1]$ -gibberellins A_{15} and A_{44} have been used to determine the stereochemistry of the conversion to the 20-aldehyde catalysed by gibberellin 20-oxidases.

The stepwise oxidation and subsequent removal of carbon-20 from C₂₀-precursors is one of the most important sequences of reactions in the biosynthesis of biologically active C_{19} gibberellin (GA) plant hormones (Scheme 1). This conversion is unusual in that carbon-20 is lost at the aldehyde oxidation level in a reaction which also involves concerted formation of the 19,10-lactone function, a characteristic structural feature of the C19-GAs, such as GA9 and GA20. The 20-carboxylic acid is also a biosynthetic product, but is not an intermediate in C₁₉-GA formation. Genes encoding GA 20-oxidases have been cloned from several plants.¹⁻⁵ These enzymes are 2-oxoglutaratedependant dioxygenases, an important class of soluble, Fe^{II}containing oxygenases .6 Functional expression of GA 20-oxidase clones in E. coli has provided the means for a detailed study of the mechanism. Although studies in cell-free systems of spinach7 indicated that more than one enzyme may be involved in the conversion of 20-methyl compounds via the 20-alcohol and 20-aldehyde to the C₁₉-lactone, all GA 20-oxidases so far cloned are able to convert substrates with 20-methyl functions through to C₁₉-lactones and/or 20-carboxylic acids.

Here we report studies on the stereochemistry of the conversion of the 20-alcohol to the 20-aldehyde. Results are compared in cell-free systems from spinach with those obtained using recombinant enzyme from high-level expression of the *Arabidopsis thaliana* GA 20-oxidase clone At2353² in *E. coli* using the pET9d vector;† this enzyme converts GA₁₂ to GA₉ in high yield.

The syntheses of (20R)- and (20S)- $[20-^{2}H]$ -GA₁₅ are summarised in Scheme 2. The route relies on the use of bulky *tert*butyldiphenylsilyl (TBDPS) protecting groups to distinguish between the alcohol functions in the triol **1**, allowing manipulation of C-20, the most sterically hindered of the three hydroxymethyl groups. Triol **1** and its $[^{2}H_{6}]$ -isotopomer **1a** were prepared by LiAlH₄ (LiAlD₄) reduction of GA₂₅ trimethyl ester, itself prepared by deoxygenation of GA₁₃ trimethyl ester.

Treatment of **1** with TBDPSCl and imidazole gave the 7,19-*bis*-TBDPS derivative **2** in high yield. Swern oxidation of **2** gave the 20-aldehyde **3**. Reduction of the aldehyde with NaBD₄ was stereoselective (see later) and returned the $[20-2H_1]$ -alcohol **4**, which was protected as the acetate, before removal of the TBDPS groups with Bu₄NF to give 7,19-diol **5**. Oxidation to the 7,19-dicarboxylic acid **6** followed by hydrolysis yielded (20*R*)-[20-2H]GA₁₅ (d₁-65%, d₀-35%), in the lactone form **7**. The corresponding (20*S*) isomer **8** (d₁-99%, d₀-1%), was prepared in an analogous way from **1a**, reducing the 20-deuterio-aldehyde **3a** with NaBH₄ as shown in Scheme 2.

The configurations of **7** and **8** were assigned by ¹H NMR spectroscopy. In fully protio species, the 20-hydrogens resonate at δ 4.12 (d, *J* 12.5 Hz) and 4.48 (dd, *J* 12.5 and 2.5 Hz). The downfield signal was assigned to the 20-*proR* proton by virtue of the long range W-coupling (2.5 Hz) to 1 β -H, as confirmed by a difference NOE experiment, which revealed a clear NOE from 6-H to the signal at δ 4.48 and the absence of any enhancement of the upfield doublet at δ 4.12, assigned to the 20-*proS* hydrogen. Both **7** and **8** were labelled stereospecifically.

The corresponding $[20-{}^{2}H_{1}]$ isotopomers of the 13-hydroxylated gibberellin, GA₄₄ 9 and 12, were synthesised as shown in

Scheme 1 Reactions catalysed by GA-20-oxidases

Scheme 2 Synthesis of (20R)- and (20S)-[20- $^{2}H_{1}]$ - GA_{15} . *Reagents*: i, KH, CS₂, MeI; ii, Bu₃SnH; iii, LiAlH₄; iv, LiAl²H₄; v, Bu⁴Ph₂SiCl, imidazole; vi, (COCl)₂, Me₂SO, Et₃N; vii, NaB²H₄; viii, NaBH₄; ix, Ac₂O, pyridine; x, Bu₄N+F⁻; xi, Jones oxidn; xii, NaOH, aq. MeOH.

Scheme 3 Synthesis of (20*R*)- and (20*S*)-[20- 2 H₁]-GA₄₄ *via* GA₁₉. *Reagents*: i, NaB²H₄; ii, NaOH, aq. MeOH; iii, 2 H₂O, K₂CO₃; iv, KH, DMF, THF, O₂; v, CH₂N₂; vi, Dowex 50W(H⁺); vii, NaBH₄.

Scheme 3. (20R)- $[20^{-2}H_1]$ - GA_{44} 9 $(d_1-95\%, d_0-5\%)$ was produced by NaBD₄ reduction of GA₁₉ dimethyl ester followed by hydrolysis of the esters (2 mol dm⁻³ aq. NaOH–MeOH, 1 : 1, reflux, 2 h). For the synthesis of (20S)- $[20^{-2}H_1]$ - GA_{44} , the starting point was ketone **10**, an intermediate in the synthesis⁸ of GA₁₉. Deuterium exchange at C-20, oxidative cleavage⁸ and methylation gave $[20^{-2}H_1]$ - GA_{19} dimethyl ester, 13-methoxymethyl ether **11**. Deprotection at C-13 and then reduction of the aldehyde followed by demethylation gave the required (20S)- $[20^{-2}H_1]$ - GA_{44} **12** (d₁-61%, d₀-39%). The stereochemistry at C-20 was assigned by ¹H NMR spectroscopy as above.

Incubation of unlabelled GA₁₅, as the lactone or as the 20-hydroxy-19-carboxylic acid ('open lactone'),‡ with recombinant At2353 20-oxidase and analysis of the products by GC–MS revealed that only the open lactone was accepted as a substrate by the enzyme. A similar result has been obtained in

Table 1 Deuterium incorporations in enzymic products

Substrate	$d_1: d_0(\%)$	Enzyme	Product	$\mathbf{d}_1\!:\!\mathbf{d}_0(\%)^a$
7 (20 <i>R</i>) Open lactone	65:35	At2353	$\begin{array}{c} GA_{24}\\ GA_{24}\\ GA_{19}\\ GA_{19}\\ GA_{19}\\ GA_{19}\\ GA_{19}\end{array}$	0:100
8 (20 <i>S</i>) Open lactone	99:1	At2353		97:3
9 (20 <i>R</i>) Open lactone	95:5	At2353		0:100
12 (20 <i>S</i>) Open lactone	61:39	At2353		50:50
9 (20 <i>R</i>) Lactone	95:5	Spinach		85:15
12 (20 <i>S</i>) Lactone	61:39	Spinach		13:87

^{*a*} GA₂₄ and GA₁₉ were identified by GC–MS comparison (KRI and spectra), as Me or Me, Me₃Si derivatives, with authetic samples. Due to weak molecular ions isotope enrichments were calculated on M⁺ – 32 (m/z 342) for GA₂₄ and M⁺ – 28 (m/z 434) for GA₁₉.

cell-free systems from *C. maxima* endosperm⁹ and pea cotyledons,¹⁰ whereas homogenates of spinach leaves oxidise the closed-lactone form of GA_{44} .⁷ Although the product of metabolism of GA_{15} open lactone was mainly GA_9 , under short incubation times§ the intermediate 20-aldehyde GA_{24} was readily detectable by GC–MS.

Incubation§ of (20*R*)- and (20*S*)-[20-²H₁]-GA₁₅ 7 and 8, and GA₄₄ 9 and 12 in the open-lactone form[‡] with recombinant enzyme and GC-MS analysis of the 20-aldehyde (GA₂₄ and GA₁₉, respectively) products, revealed that, for both GA₁₅ and GA₄₄ substrate, there is stereospecific loss of the 20-proR hydrogen (Table 1). In contrast, incubation of 9 and 12, in the closed-lactone form, with the spinach cell-free system⁷ and analysis of the 20-aldehyde (GA19) produced showed that, in this case, the 20-proS hydrogen is lost (Table 1). Thus, this cellfree system contains an enzyme that is capable of oxidising C-20, presumably in the lactone form, and it does so with the opposite stereochemistry to that observed with the recombinant A. thaliana protein, which only accepts the open-lactone form. In the lactone form, the 20-*proR* hydrogen is fixed in a severely sterically hindered position under ring B and, thus, it is not surprising that the lactone 20-oxidase, present in spinach, removes the 20-proS hydrogen. However, in the enzymes that accept only the 'open-lactone' form, the substrate presumably is held such that the 20-proR hydrogen is more exposed.

Footnotes

[†] Full details of the functional expression and characterisation of GA 20-oxidases will be reported elsewhere.

‡ The lactone-opened form of 20-hydroxymethyl GAs was produced by treatment with 2 mol dm⁻³ NaOH.

§ Recombinant enzyme incubations were carried out in a total volume of 100 μ l of TrisCl buffer (1 mol dm⁻³, pH 7.5) containing 70 μ l enzyme preparation [45% pure enzyme (estimated from SDS gel), 2.5 mg protein ml⁻¹]. GA substrate (5 μ g), 2-oxoglutarate (8 mmol dm⁻³), ascorbic acid (8 mmol dm⁻³), dithiothreitol (8 mmol dm⁻³), FeSO₄(1 mmol dm⁻³), catalase (2 mg ml⁻¹) and bovine serum albumin (4 mg ml⁻¹).

References

- 1 T. Lange, P. Hedden and J. E. Graebe, *Proc. Natl. Acad. Sci. USA*, 1994, **91**, 8552.
- 2 A. L. Phillips, D. A. Ward, S. Uknes, N. E. J. Appleford, T. Lange, A. K. Huttly, P. Gaskin, J. E.Graebe and P. Hedden, *Plant Physiol.*, 1995, **108**, 1049.
- 3 Y-L. Xu, L. Li, K. Wu, A. J. M. Peeters, D. A. Gage and J. A. D. Zeevaart, *Proc. Natl. Acad. Sci. USA*, 1995, **92**, 6640.
- 4 K. Wu, D. A. Gage and J. A. D. Zeevaart, *Plant Physiol.* 1996, **110**, 547.
- 5 D. N. Martin, W. M. Proebsting, T. D. Parks, W. G. Dougherty, T. Lange, M. J. Lewis, P. Gaskin and P. Hedden, *Planta*, 1996, **200**, 159.
- 6 A. G. Prescott and P. John, Ann. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47, 245.
- 7 S. J. Gilmour, J. A. D. Zeevaart, L. Schwenen and J. E. Graebe, *Plant Physiol.*, 1986, 82, 190.
- 8 R. D. Dawe, L. N. Mander and J. V. Turner, *Tetrahedron Lett.*, 1985, 26, 363.
- 9 P. Hedden and J. E. Graebe, J. Plant Growth Regul., 1982, 1, 105.
- 10 Y. Kamiya, Y. Takahashi and J. E. Graebe, *Planta*, 1986, **169**, 524. *Received*, 6th September 1996; Com. 6/06158C

14 Chem. Commun., 1997