Synthesis of 3-*O***-sialyl and 6-***O***-sulfo derivatives of dimeric** *N***-acetyl lactosamine as specific acceptors for** a**-l-fucosyltransferases**

Rakesh K. Jain,† Bao-Guo Huang, E. V. Chandrasekaran and Khushi L. Matta*

Department of Gynecologic Oncology, Rosewell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA

The stereoselective syntheses of 3-*O***-sialyl and 6-***O***-sulfo dimeric lactosamine derivatives 1–4 are accomplished through the use of key glycosyl donors 13 and 15.**

In continuation of our efforts towards the synthesis of biologically important oligosaccharides, we have developed an elegant synthesis of 3-*O*- and 6-*O*-substituted dimeric lactosamine derivatives. **1**–**4**1 (Fig. 1), which were prepared from the key intermediates **5**–**13** (Fig. 2) by stereoselective transformation, as described in Schemes 1–3. Our approach is based upon the observation that an *O*-acetyl group can be selectively removed in the presence of a 6-*O*-pivaloyl substituent to give 6-*O*-pivaloyl b-d-galactopyranosyl linked compounds. Glycosylation of $\overline{5}$ with $\overline{9}$ under Mukaiyama's conditions (SnCl₂– AgOTf)2 followed by acetylation with pyridine–acetic anhydride afforded the $\beta(1\rightarrow3)$ linked disaccharide 14 in 8% yield and the $\beta(1\rightarrow4)$ linked disaccharide **15** in 48% yield. The ¹H NMR spectrum of **15** displayed characteristic signals for H-3, H-1 (δ 5.71–5.67), H-1' (δ 4.50, d, $J = 8.0$ Hz), $4 \times$ OAc (δ 2.08, 2.04, 1.93 and 0.86) and $2 \times \text{CMe}_3$ (δ 1.25 and 1.17). Isopropylidenation of 11, using Catelani's procedure,³ followed

Fig. 1 Target molecules sialyl and sulfated dimeric lactosamine **1**–**4**

Fig. 2 Key intermediates **5**–**13** involved in the synthesis of target molecules **1**–**4**

by acetylation with pyridine–acetic anhydride and deacetonation provided the acceptor **16** in 66% yield. The 1H NMR spectrum gave characteristic signals at δ 5.70 (dd, H-3), 2.10 and 1.09 (2 \times OAc) and 1.27 and 1.23 (2 \times CMe₃). Condensation of the donor **15** with **16** under NIS–triflic acid conditions at -30 °C gave 17 in 76% yield. The ¹H NMR spectrum of 17 displayed characteristic signals at δ 5.71–5.59 (2) $\overline{\times}$ dd and d, H-3, H-3" and H-4"), 5.46 (d, $J = 8.3$ Hz, H-1"), 5.24 (d, $J = 8.5$ Hz, H-1), 5.09 (dd, H-2^m), 4.97 (dd, H-2'), 4.53 $(d, J = 7.9$ Hz, H-1'''), 4.43 $(d, J = 7.6$ Hz, H-1'), 2.10–1.49 (cluster of singlets, $6 \times$ OAc) and 1.25, 1.23 and 1.94 (4 \times CMe₃) which confirmed a $\beta(1\rightarrow 3)$ conformation of the newly incorporated glycosidic linkage. De-*O*-acetylation of **17** in MeOH–CH₂Cl₂ (1 : 1, v/v) with MeOH–MeONa (pH 10) at 0 °C provided the acceptor **18** in 95% yield. The 1H NMR spectrum gave characteristic signals at δ 5.58–5.69 (2 \times dd, H-3" and \overline{H} -3), 5.34 (d, H-1", $J = 8.2$ Hz), 5.24 (d, H-1, $J = 8.4$ Hz), 4.82 (dd, H-2'), 4.73 (d, $J = 7.8$ Hz, H-1'''), 4.35 (d, $J = 7.7$ Hz, H-1'), 1.84, 1.75 and 1.49 (each s, $3 \times$ OAc) and 1.25, 1.23, 1.22 and 0.97 (each s, $4 \times \text{CMe}_3$) confirming the assigned structure.

Scheme 1 *Reactions and conditions*: i, **5** (1.0 equiv.), **9** (1.5 equiv.), AgOTf (1.20 equiv.), 4 Å molecular sieves, CH_2Cl_2 -toluene (5:1, v/v), -15 °C to room temp., 5 h; ii, pyridine–Ac₂O (2 : 1, v/v); iii, 0.15% CSA, DMP, 24 h, MeOH–H2O (10 : 1, v/v), 100 °C, 6 h; iv, 70% aq. AcOH, 70 °C, 2 h; v, **15** (1.05 equiv.), or **10** (3.0 equiv.), NIS (3.0 equiv.)–triflic acid, 230 °C, 2 h; vi, MeOH–CH₂Cl₂ (1:1, v/v), MeONa (pH 10), 2 h; vii, SO₃–pyridine complex in pyridine (6.0 equiv.), 5 °C, 16 h; viii, MeOH–hydrazine hydrate $(4:1, v/v)$, 100 °C, 16 h, Ac₂O (excess), MeOH–CH₂Cl₂ (1:1, v/v), 0 °C, 1 h; ix, MeOH–MeONa, 24 h; x, LiI (10 equiv.), pyridine, 120 °C, 3 h

*Chem. Commun***., 1997 23**

Scheme 2 Reagents and conditions: i, MeOH–CH₂Cl₂ (1:1, v/v), MeONa, 0 °C, 2 h, 85%; ii, DMP, PTS, room temp., 1.5 h, 89%; iii, pyridine–Ac2O $(2:1, v/v)$, room temp., 12 h, 89%; iv, 70% aq. AcOH, 65 °C, 2.5 h, 66%; v, **13** (0.95 equiv.), NIS (3.0 equiv.)–triflic acid, 220 °C, 1 h, 54%; vi, EtOH–hydrazine hydrate $(4:1, v/v)$, 100 °C, 16 h, pyridine–Ac₂O $(2:1,$ v/v), room temp., 12 h, 84%; vii, 10% Pd–C, H_2 , MeOH, 16 h; 50%; viii, SO3–pyridine complex in DMF (10 equiv.), 0 °C, 16 h; ix, MeOH–MeONa, 16 h; Na+ resin, 35% from **22**

Removal of both the phthalimido and acetate groups from **20** was accomplished by treatment with hydrazine hydrate in ethanol $(1:\,9, v/v)$ at 80° C followed by N-acetylation to give 23 in 65% yield. Condensation of sialic acid donor **10** with **23** at 240 °C followed by *O*-acetylation gave **24** in 35% yield (based on **23** consumed). The synthesis of **4** from **24** was achieved by a sequence of reactions similar to those described for the preparation of **3** from **21**. The structures of **1**–**4** were confirmed by 1H and 13C NMR spectroscopy.†

Our preliminary examination of $Gal β 1,4(6-sulf_O)$ GlcNAc β 1,3 Gal β 1,4(6-sulfo) GlcNAc β -O-Me (3) and Neu- $Ac\alpha$ 2,3Gal β 1,4(6-sulfo)GlcNAc β 1,3Gal β 1,4(6-sulfo)

 $GlcNAc\beta$ -O-Me (4) indicated that both of these compounds were equally active as acceptors for human colon tumour α 1,3l-fucosyltransferase.

These investigations were supported by Grant No. CA 63218 awarded by the National Cancer Institute.

Footnote

 \dagger *Selected data* for **1**: $[\alpha]_D$ 7 (*c* 1.5, H₂O) [lit.,¹² - 12.2 (*c* 0.5, H₂O)]; ¹³C NMR (D₂O, 100.6 MHz): δ 101.86 (C-1''), 101.72 (C-1'), 101.45 (C-1''), 98.81 (C-1), 81.04 (C-3'), 77.49 (C-3"'), 73.89 (C-4"), 73.85 (C-4), 59.90 (C-6^m and C-6'), 59.09 (C-6"), 58.85 (C-6), 54.19 (C-2"), 53.99 (C-2). For **2**: $[\alpha]_D + 186$ (*c* 0.2, H₂O); ¹H NMR (D₂O, 400 MHz): δ 4.84 (d, *J* = 12 Hz,

Scheme 3 *Reagents and conditions*: i, EtOH–hydrazine hydrate (9 : 1, v/v), 80 °C, 1 h, MeOH–Et3N–Ac2O (4 : 2 : 1), room temp., 2 h, 65%; ii, **10** (2.50 equiv.), NIS (3.0 equiv.)–triflic acid, MeCN, -40 °C, 1 h; iii, pyridine–Ac₂O (2:1, v/v), room temp., 12 h, 35% based on 23 consumed; iv, 10% Pd–C, H₂ MeOH, 24 h; v, SO3–pyridine complex in DMF (10 equiv.), room temp., 2 h; vi, MeOH–MeONa, 48 h; H2O, 4 h, Na+ resin, 56% from **24**

Selective sulfation of 18 with SO_3 -pyridine complex in pyridine at 5 °C provided the 3-*O*-sulfo compound which upon removal of its phthalimido group (MeOH–hydrazine hydrate, 100 °C) and *N*-acetylation followed by de-*O*-acetylation (MeOH–MeONa) gave the known compound **1** (55% from **18**).4

A similar NIS–triflic acid reaction of **18** with sialic acid donor **10** provided the crude pentasaccharide. The conversion of this intermediate into target compound **2** (23% from **18**) was then carried out in 4 steps: (i) LiI–pyridine (methyl ester to acid), (ii) MeOH–hydrazine hydrate (phthalimido group removal), (iii) Ac₂O–MeOH–CH₂Cl₂ (*N*-acetylation) and (iv) MeOH–MeONa (de-*O*-acetylation).

The synthesis of **3** and **4** (Schemes 2 and 3) involved the glycosylation of **8** with fluoride **9** under conditions similar to those described for the preparation of **15** (from **5**), followed by acetylation to give donor 13 along with some $1 \rightarrow 3$ linked disaccharide. Condensation of **13** with **19** under NIS–triflic acid conditions at -20 °C provided 20 in 54% yield. The formation of **21** from **20** was achieved by the treatment with hydrazine hydrate in ethanol (1 : 4, v/v) at 100 °C followed by acetylation with pyridine–acetic anhydride in 84% yield. The removal of *O*benzyl (10% Pd–C) gave diol 22 which on sulfation with SO_3 – pyridine complex in DMF and followed by de-*O*-acetylation gave compound **3** in 35% yield (from **22**).

H-1"), 4.69 (d, $J = 11.0$ Hz, H-1), 4.50 (d, $J = 8.0$ Hz, H-1"), 4.41 (d, $J = 8.0$ Hz, H-1'), 2.71 (dd, $J = 4.6$ Hz, H-3""e), 1.99 and 1.88 (each s, $3 \times \text{NAc}$), 1.75 (t, $J = 1.2$ Hz, H-3^{*m*}a); ¹³C NMR: δ 101.86 (C-1^{*m*}), 101.73 (C-1'), 101.55 (C-1"), 98.79 (C-1), 81.04 (C-3'), 77.49 (C-3"'), 74.49 (C-4"), 74.15 (C-4), 61.58 (C-9""), 59.99 (C-6""), 59.91 (C-6'), 59.09 (C-6"), 58.86 (C-6), 54.17 (C- 2"), 53.99 (C-2), 50.68 (C-5"), 38.63 $(C-3''')$; *m*/*z* 1128.5 (M – Na)⁻. For **3**: $[\alpha]_D +21$ (*c* 0.6, H₂O); ¹³C NMR: δ 101.84 (C-1''), 101.67 (C-1'), 101.56 (C-1''), 100.94 (C-1), 81.46 (C-3'), 76.88 (C-3""), 74.33 (C-4"), 74.05 (C-4), 67.63 (C-6"'), 67.36 (C-6), 60.11 (C-6", 60.02 (C-6'), 56.19 (OMe), 54.15 (C-2"), 53.91 (C-2); m/z 942.9 (M) $-$ Na)⁻. For 4: $[\alpha]_D$ +24 (*c* 0.7, H₂O); ¹³C NMR: δ 101.84 (C-1'''), 101.60 (C-1'), 101.15 (C-1"), 100.92 (C-1), 98.73 (C-2""), 81.50 (C-3'), 76.79 $(C-3''')$, 74.29 $(C-4'')$, 74.02 $(C-4)$, 67.29 $(C-6'')$, 67.08 $(C-6)$, 61.52 $(C-9''')$, 60.01 (C-6' and C-6"'), 56.17 (OMe), 54.09 (C-2"), 53.06 (C-2), 50.60 (C-5""), 38.57 (C-3"").

References

- 1 R. K. Jain, R. Vig, R. D. Locke, A. Mohammad and K. L. Matta, *J. Chem. Soc., Chem. Commun.*, 1996, **65**.
- 2 T. Mukaiyama, Y. Murai and S. Shoda, *Chem. Lett.,* 1981, 431; T. Mukaiyama, Y. Hashimoto and S. Shoda, *Chem. Lett.*, 1983, 935.
- 3 G. Catelani, F. Colonna and A. Marra, *Carbohydr. Res.*, 1988, **182**, 297.
- 4 G. V. Reddy, R. K. Jain, R. D. Locke and K. L. Matta, *Carbohydr. Res.*, 1996, **280**, 261.

Received, 5th August 1996; Com. 6/05439K