Catalysis by calcium ion of the reoxidation of reduced PQQ by molecular oxygen

Shinobu Itoh,* Hirokatsu Kawakami and Shunichi Fukuzumi*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565, Japan

Reoxidation of reduced PQQ to the quinone by molecular oxygen is enhanced drastically by Ca^{2+} , the interaction of which has been recently demonstrated to exist in the enzyme active site by the X-ray crystallographic analysis of quinoprotein methanol dehydrogenase.

PQQ (pyrroloquinolinequinone) is a novel coenzyme that was first isolated and identified from bacterial methanol dehydrogenases (MDH, E.C. 1.1.99.8) in 1979.1 This coenzyme is the redox centre of MDH that catalyses the oxidation of methanol to formaldehyde and donates two electrons to a c-type cytochrome in biological systems.² Recently, the crystal structure of MDH from methylotrophic bacteria has been determined by two independent research groups to provide full particulars of the enzyme active centre. According to the reported X-ray structure, there is one calcium ion strongly bound to PQQ through its C-5 quinone carbonyl oxygen, N-6 pyridine nitrogen, and C-7 carboxylate group in the enzyme active site.^{3,4}[†] In this context, we have recently demonstrated that the oxidation of methanol to formaldehyde by coenzyme PQQ is promoted significantly by Ca²⁺, providing valuable insight into the role of Ca2+ in the enzymatic alcohol-oxidation mechanism.⁵ On the other hand, however, very little is known about the catalytic role of Ca²⁺ in the reoxidation process of reduced PQQ. Here, we report that Ca²⁺ also enhances the oxidation of reduced PQQ to the quinone by molecular oxygen, providing further information on the catalytic function of Ca2+ in the enzymatic redox reactions.

The trimethyl ester of reduced PQQ in the quinol form $(H_2L^1, 2.5 \times 10^{-5} \text{ mol dm}^{-3})^6$ is oxidised by molecular oxygen very slowly in anhydrous acetonitrile (MeCN) as shown in Fig. 1 (line *a* in the inset). Addition of Ca²⁺ (8.2 × 10⁻³ mol dm⁻³) into the O₂-saturated MeCN solution of H₂L¹ results in significant acceleration of the oxidation rate (line *b* in the inset of Fig. 1). The absorbance at $\lambda_{max} = 326$ nm due to H₂L¹ decreases accompanied by the increase in absorbance due to the quinone L¹ (Fig. 1). Quantitative formation of H₂O₂ in the final reaction mixture has been confirmed by iodometric titration

using NaI. Rates of the reaction of H₂L¹ and O₂ in the presence of various concentrations of Ca²⁺ in MeCN at 298 K were determined by monitoring the decrease in absorbance at $\lambda_{\text{max}} = 326$ nm due to H₂L¹. The rates obeyed pseudo-firstorder kinetics in the presence of a large excess of O₂ (1.3 × 10⁻² mol dm⁻³) and the observed pseudo-first-order rate constant (k_{obs}) increases with an increase in [Ca²⁺] to exhibit first-order dependence on [Ca²⁺] at low concentrations, changing to second-order dependence at high concentrations, as shown in Fig. 2.

Fig. 1 Spectral changes observed in the oxidation of H_2L^1 (2.5 × 10⁻⁵ mol dm⁻³) by O₂ (1.3 × 10⁻² mol dm⁻³) in the presence of Ca(ClO₄)₂ (8.2 × 10⁻³ mol dm⁻³) in O₂-saturated MeCN containing 0.8% Me₂SO at 298 K. Inset: time course of the reaction followed at $\lambda = 326$ nm under an O₂ atmosphere (*a*) in the absence and (*b*) in the presence of Ca(ClO₄)₂ (1.0 × 10⁻³ mol dm⁻³) at 298 K.

Fig. 2 Plot of k_{obs} vs. [Ca(ClO₄)₂] for the oxidation of H₂L¹ (2.5 × 10⁻⁵ mol dm⁻³) by O₂ (1.3 × 10⁻² mol dm⁻³) in the presence of Ca(ClO₄)₂ in O₂-saturated MeCN containing 0.8% Me₂SO at 298 K. Inset: plot of [Ca²⁺l k_{obs}^{-1} vs. [Ca²⁺]⁻¹ for the reaction.

Chem. Commun., 1997 29

Addition of $Ca(ClO_4)_2$ to a deaerated MeCN solution of H_2L^1 results in a decrease in absorbance at $\lambda_{max} = 326$ nm due to H_2L^1 accompanied by an increase in absorbance at $\lambda_{max} = 350$ nm due to the Ca2+ complex of a reduced species with a clear isosbestic point at 344 nm as the concentration of $Ca(ClO_4)_2$ is raised. From such a spectral change, one can obtain the 1:1 complex formation constant K as $1.0 \times 10^2 \text{ mol}^{-1} \text{ dm}^3$ using the relation $(A - A_0)/(A_\infty - A) = K[Ca^{2+}]$, where A_0 is the absorbance of H_2L^1 itself and A_{∞} is the absorbance of the Ca²⁺ complex. Essentially the same spectral change was observed for 4-methoxy-substituted derivative HL² in the titration with $Ca(ClO_4)_2$ in deaerated MeCN, from which the K value was determined as 1.1×10^2 dm³ mol⁻¹.

Since the direct reaction with O_2 to give a covalent bond is spin forbidden, it has been proposed that the reaction of 1,5-dihydroflavin with O₂ occurs via an electron-transfer mechanism, resulting in a radical-ion pair, which collapses to form the covalent flavin-4a-hydroperoxide after spin conversion.^{7,8} In this context, we have recently demonstrated that Mg²⁺ catalyses the electron transfer step from 1,5-dihydroflavin anion to O_2 via the complex formation of O_2 - and Mg^{2+} to accelerate the overall two-electron oxidation of 1,5-dihydroflavin anion.⁹ Thus, Ca^{2+} may also catalyse the electron transfer step from H_2L^1 to O_2 . The contribution of the secondorder dependence of k_{obs} on [Ca²⁺] in Fig. 2 indicates that the H_2L^1 -Ca²⁺ complex is a reactive electron donor rather than free H₂L¹ as shown in Scheme 1. The electron transfer from H₂L¹- Ca^{2+} to O_2 is catalysed by Ca^{2+} via the complex formation of O_2 - and Ca^{2+} as in the case of the Mg²⁺-catalysed oxidation of 1,5-dihydroflavin anion.9 The electron transfer may be accompanied with deprotonation and followed by fast hydrogen atom transfer to yield H₂O₂.

According to Scheme 1, the dependence of k_{obs} on [Ca²⁺] is derived as $k_{obs} = kK[Ca^{2+}]^2[O_2]/(1 + K[Ca^{2+}])$, where K is the complex formation constant of H_2L^1 with Ca^{2+} and k is the rate constant of the Ca2+-catalysed oxidation of the reduced form by O₂ via formation of 1 : 1 complex between O₂ · – and Ca²⁺. The kinetic equation can be rewritten as $[Ca^{2+}]k_{obs}^{-1} = (k[O_2])^{-1}[1 + (K[Ca^{2+}])^{-1}]$, where $[Ca^{2+}]k_{obs}^{-1}$ is linearly related to $[Ca^{2+}]^{-1}$. A linear plot of $[Ca^{2+}]k_{obs}^{-1}$ vs. $[Ca^{2+}]^{-1}$ is shown in the inset of Fig. 2. From the slope and intercept are obtained the rate constant $k = 8.6 \times 10^2 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and the complex formation constant $K = 1.0 \times 10^2 \text{ dm}^3 \text{ mol}^{-1}$. The *K* value thus obtained agrees perfectly with the K value (1.0 \times 10²

$$\begin{array}{cccc} & & & & & & \\ H_2L^1 & & & & \\ & & & \\ \hline & & & \\ & & -Ca^{2+} \end{array} & H_2L^1 - Ca^{2+} & & \\ & & & \\ & & & \\ & & -H^+ \end{array} \xrightarrow[]{} \left[HL^{1*} - Ca^{2+} & O_2^{**} - Ca^{2+} \right] \\ & & & \downarrow fast \\ & & & \\ & & L^1 - Ca^{2+} + HO_2^{-} + Ca^{2+} \end{array}$$

Scheme 1

dm³ mol⁻¹) determined independently from the titration. Such an excellent agreement supports the validity of Scheme 1, where the H_2L^1 -Ca²⁺ complex is a reactive species for the oxidation by O_2 . The spectral changes due to the formation of the H_2L^{1-} Ca^{2+} and $HL^{2-}Ca^{2+}$ complexes are similar to that observed in the pH titration of PQQ \hat{H}_2 to PQQH^{-.6} Since the K value of H_2L^1 is about the same as that of HL^2 (vide supra), the binding position of Ca^{2+} with H_2L^1 and HL^2 may be the same. Thus, the coordination of Ca²⁺ may occur to the hydroxy oxygen at the 5 position as well as the pyridine nitrogen at the 6 position, facilitating the deprotonation of C(5)-OH proton to produce a much stronger electron donor than free H_2L^1 . This may be the reason why the H_2L^1 -Ca²⁺ complex acts as a reactive electron donor in the Ca²⁺-catalysed electron transfer to O₂ (Scheme 1).

The present study was financially supported in part by a Grant-in-Aid for Scientific Research on Priority Area (08249223) and a Grant-in-Aid for General Scientific Research (08458177) from the Ministry of Education, Science, Sports, and Culture of Japan. We also thank Takeda Science Foundation for financial support.

Footnote

[†] The presence of Ca²⁺ in the enzyme active site has been also suggested for other PQQ-dependent enzymes such as ethanol dehydrogenase from Pseudomonas aeruginosa and glucose dehydrogenase from Acinetobacter calcoaceticus, see ref. 10.

References

- 1 S. A. Salisbury, H. S. Forrest, W. B. T. Cruse and O. Kennard, Nature, 1979. 280. 843
- 2 C. Anthony, M. Ghosh and C. C. F. Blake, Biochem. J., 1994, 304, 665 and references therein.
- 3 S. A. White, G. D. Boyd, F. S. Mathews, Z.-X. Xia, W.-W. Dai, Y.-F. Zhang and V. L. Davidson, *Biochemistry*, 1993, **32**, 12955; Z.-X. Xia, W.-W. Dai, Y.-F. Zhang, S. A. White, G. D. Boyd and F. S. Mathews, J. Mol. Biol., 1996, 259, 480.
- 4 C. C. F. Blake, M. Ghosh, K. Harlos, A. Avezoux and C. Anthony, Nature Struct. Biol., 1994, 1, 102; M. Ghosh, C. Anthony, K. Harlos, M. G. Goodwin and C. Blake, Structure, 1995, **3**, 177. 5 S. Itoh, H. Kawakami and S. Fukuzumi, J. Am. Chem. Soc., in
- contribution.
- 6 PQQTMEH₂ was synthesised according to the reported procedure: S. Itoh, Y. Ohshiro and T. Agawa, Bull. Chem. Soc. Jpn., 1986, 59, 1911.
- 7 C. Kemal, T. W. Chan and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7272; E. J. Nanni Jr., D. T. Sawyer, S. S. Ball and T. C. Bruice, J. Am. Chem. Soc., 1981, 103, 2797; G. Eberlein and T. C. Bruice, J. Am. Chem. Soc., 1982, 104, 1449; 1983, 105, 6685.
- 8 K. Maeda-Yorita and V. Massey, J. Biol. Chem., 1993, 268, 4134.
- S. Fukuzumi and T. Okamoto, J. Chem. Soc., Chem. Commun., 1994, 9 521.
- 10 A. Mutzel and H. Görisch, Agric. Biol. Chem., 1991, 55, 1721; O. Geiger and H. Görisch, Biochem. J., 1989, 261, 415.

Received, 7th October 1996; Com. 6/06842A