Dynamics of adduct formation of hydroquinone under oxidative conditions observed by laser spectroscopy

Victor Nadtochenko† and John Kiwi

Institute of Physical Chemistry II, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland

Hydroxylated products of hydroquinone (H_2Q) are induced via [Fe(ox)₃]³⁻- H_2O_2 under light and detected in the visible region by laser spectroscopy; reaction of hydroxyl radicals with (H_2Q) is observed leading to adduct formation.

During the past few years the photochemistry of tris(oxaloferrate) has been studied.^{1,2} Work has been reported recently^{3,4} of the reactions of this complex with organic compounds using steady-state photolysis, flash photolysis and stopped-flow in the millisecond region and at longer times. Here, we report on the reactions of $[Fe(ox)_3]^{3-}$ –H₂O₂ with hydroquinone (H₂Q) from the nanosecond timescale upwards. The findings reported here aim to further our understanding^{4–7} about the mode of intervention of $[Fe(ox)_3]^{3-}$ during the degradation of H₂Q in oxidative media.

FeCl₃, dihydrooxalic acid and hydroquinone were all Fluka p.a. and used as received. Laser photolysis was carried out using the second harmonic ($\lambda = 347$ nm) of a JK-2000 ruby laser operated in the Q-switched mode. The pulse width was *ca*. 10 ns and the energy *ca*. 10 mJ per pulse. The detection of the transient absorption changes was performed *via* an EGG photomultiplier with a rise time of *ca*. 5 ns. The basic system for kinetic spectroscopy detection has been described previously.⁸

Fig. 1(*a*) presents the transient species after the laser pulse for the traces (*i*) H_2Q (40 mm) reacting with H_2O_2 (0.29 mm), (*ii*)

Fig. 1 (*a*) Laser transients for different solutions of $[Fe(ox)_3]^{3-}$, H_2O_2 and hydroquinone (H₂Q). For other experimental details see text. (*b*) Transient decay spectra as a function of λ for the system $Fe(ox)_3^{3^*-}$ [oxalate (0.6 mm)–Fe³⁺ (18 mm), H₂Q (40 mm) and H₂O₂ (0.29 m) at pH 6.5].

 $[Fe(ox)_3]^{3-}$ reacting with H_2O_2 (0.29 mm), (*iii*) the transient decay of $[Fe(ox)_3]^{3-}$ (0.6 mm) back to the ground state or to a metastable longer lived⁶ intermediate $[(ox)_2Fe(ox^{-})]$ I (Scheme 1).

Trace (*iv*) in Fig. 1(*a*) shows $[Fe(ox)_3]^{3-}$ decay in the presence of H₂Q (40 mm) where a quenching effect is noticeable. Finally, to this solution is added H₂O₂ (0.29 m) and the result is shown in Fig. 1(*a*) trace (*v*). The lifetimes (τ) of $[Fe^{III}(ox)_3]^{3-*}$ and **I** are *ca*. 5 µs and 2 ms, respectively, at neutral pH. The disappearance of the initial transient absorption is followed by the formation of a coloured species within *ca*. 600 µs. This is observed only in trace (*v*) for the complete chemical system $[Fe(ox)_3]^{3-}$ –H₂O₂–H₂Q. It is not possible to rationalize this result in terms of formation of ·OH radicals by the usual Fenton mechanism [eqn. (2)]^{1,4} since (*a*) the

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH; \quad k_2 = 41-75 \text{ m}^{-1} \text{ s}^{-1}$$
(2)

characteristic time for the reaction is about 10^3 times longer⁹ than the values observed in Fig. 1(*a*) when $[Fe(ox)_3]^{3-}-H_2O_2$ is photolysed in solution and (*b*) the observed rise time of the coloured product in Fig. 1(*a*) is seen to be close to the lifetime of the transient $[Fe(ox)_3]^{3-*} + H_2O_2$ as shown in Fig. 1(*a*) trace (*ii*). It is therefore impossible to assign the observed •OH radical formation to the mechanism of eqn. (2) since only fast intermediates having lifetimes of microseconds would be able to hydroxylate H_2Q . Radical formation could be accounted for by reaction of $[Fe^{III}(ox)_3]^{3-*}$ or I with $H_2O_2^6$ (Scheme 2).

It has been previously reported¹⁰ that $k_{OH + H_2Q} = 1.2 \times 10^{10}$ m⁻¹ s⁻¹. Since H₂Q (40 mm) was used in Fig. 1(*a*), trace (*i*), the characteristic time for ·OH radical attack would be *ca*. 2.1 × 10⁻⁹ s. The second pathway of Scheme 2 [eqn. (3*b*)] therefore should be the limiting step for ·OH radical formation when [Fe^{III}(ox)₃]^{3-*} reacts with H₂O₂ under light leading subsequently to adduct formation with H₂Q as observed in trace (*v*) of Fig. 1(*a*). This conclusion is confirmed by the near independence observed for the formation of the coloured product of H₂Q on the H₂Q concentration in the range 2–40 mm at fixed H₂O₂ and [Fe^{III}(ox)₃]³⁻ concentrations [as shown in Fig. 2(*b*)].

Fig. 1(*b*) shows the absorbances of the products formed after the laser pulse. Different transient lifetimes and absorbances (*A*) were observed as a function of λ due to the existence of different coloured intermediate transients between 350 and 550 nm. The

Scheme 2

Chem. Commun., 1997 41

signals in Fig. 1(*b*) at $\lambda = 450$ nm and beyond would correspond to oxidized H₂Q–OH adducts in agreement with work by Adams and Michael¹⁰ using pulse radiolysis. The spectrum at 5 µs after the pulse is mainly due to the initial quenching of the binary system [Fe(ox)₃^{3–}]–H₂Q by H₂O₂. Kinetics of H₂Q hydroxylation consistent with the observations can be rationalized by Schemes 1–3. The rate constants used have been previously reported.^{11–13}

Under the experimental conditions used, $[H_2O_2] \gg [Fe^{2+}]$, $[H_2O_2] \gg [ox^{2-}]$ and $[H_2O_2] \gg [\cdot OH]$. The solution for this

Scheme 3			
•OH + Fe ²⁺ ·····	OH [–] + Fe ³⁺	$k_8 = 3 \times 10^8 \mathrm{M}^{-1} \mathrm{s}^{-1}$	(8)
•OH + •OH ·····-	H ₂ O ₂	$k_7 = 5.3 \times 10^9 \mathrm{M}^{-1} \mathrm{s}^{-1}$	(7)
ox²− + •OH ·····→	OH- + ox•-	$k_6 = 2 \times 10^6 \mathrm{M}^{-1} \mathrm{s}^{-1}$	(6)
H ₂ O ₂ + •OH ·····→	HO ₂ • + H ₂ O	$k_5 = 1.3 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$	(5)
H ₂ Q + ⁰OH ·····→	H ₂ Q–OH(adduct)	$k_4 = 1.2 \times 10^{10} \mathrm{M}^{-1} \mathrm{s}^{-1}$	(4)

Scheme 3

 $[Fe(ox)_{3}^{3-*}] / dt = -k_{q}[Fe(ox)_{3}^{3-*}] - k_{a}[H_{2}O_{2}][Fe(ox)_{3}^{3-*}]$ (9)

 $d[^{\bullet}OH] / dt = k_{a}[H_{2}O_{2}][Fe(ox)_{3}^{3-^{*}}] - k_{5}[^{\bullet}OH][H_{2}O_{2}] - k_{4}[^{\bullet}OH][H_{2}Q]$ (10)

 $d[adduct] / dt = k_4[^{\bullet}OH][H_2Q]$

Fig. 2 (*a*) Dependency of the reciprocal rise time of hydroquinone adducts (\bigcirc) and absorbance A_{max} (\blacksquare) *vs.* H₂O₂ concentration. The same solution as in Fig. 1(*b*) was used. The insert shows the transient at $\lambda = 400$ nm when H₂O₂ is added at concentrations of (*i*) 0.029, (*ii*) 0.12, (*iii*) 0.58 and (*iv*) 1.16 m. (*b*) Dependency of the reciprocal rise time of hydroquinone (H₂Q) adducts (\bigcirc) and absorbance A_{max} (\blacksquare) as a function of H₂Q concentration. The insert shows the transient at $\lambda = 400$ nm when H₂Q has been added in the following concentrations: (*i*) 10, (*ii*) 20, (*iii*) 39, (*iv*) 59 and (*v*) 79 mm.

system of differential equations can be stated in a simplified form

$$\Delta A(t) = A_{\max} - (\text{cte}) \exp\{-(k_{q} + k_{a}[\text{H}_{2}\text{O}_{2}])t\}$$
(12)

where $A_{\text{max}} = k_4 k_a [H_2 O_2] [H_2 Q] [Fe(ox)_3^{3*-}]_0 / (k_q + k_a [H_2 - O_2]) (k_5 [H_2 O_2] + k_4 [H_2 Q])$ and (cte) = $k_4 k_a [H_2 O_2] [H_2 Q] - [Fe(ox)_3^{3*-}]_0 / \{ [(k_5 [H_2 O_2] + k_4 [H_2 Ql]) - k_q + k_a [H_2 O_2])] (k_q + k_a [H_2 O_2]) \}.$

Fig. 2(a) and (b) show the dependency of the reciprocal rise time k/s^{-1} and maximum amplitude for the coloured products (A_{max}) as a function of H₂O₂ and H₂Q concentrations. Fig. 2(*a*) shows the dependency for k/s^{-1} vs. [H₂O₂] for a solution oxalate 18 mm–Fe³⁺ 0.6 mm at pH 6.5 and $[H_2Q] = 59$ mm. The insert in Fig. 2(a) shows the traces due to the coloured adduct formation (A) for different concentrations of added H₂O₂ in the millisecond range. The linear dependency of k/s^{-1} vs. H₂O₂ in Fig. 2(a) with slope $2.9 \pm 0.4 \times 10^5$ m⁻¹ s⁻¹ is observed to be close to the value of the quenching reported⁵ for $[Fe(ox)_3]^{3-*}$. This suggests the formation of \cdot OH radicals in reaction (3) as the limiting step for H₂Q hydroxylation. This result is consistent with the relation $k/s^{-1} = k_q + k_a[H_2O_2]$. In the latter equation at high H₂O₂ concentrations $k_a[H_2O_2] > k_q$, the value of A_{max} would be independent of the oxidant concentration. In effect Fig. 2(*a*) shows that the value of A_{max} is almost independent of H_2O_2 concentration above *ca*. 0.25 m.

Fig. 2(*b*) shows the rate constant when experiments similar to those in Fig. 2(*a*) were carried out. The H₂O₂ concentration was kept constant at 0.145 **m** while the concentration of H₂Q was varied in the range 2–78 mm. The growth of the transient at $\lambda = 400$ nm is shown in the insert. The value of A_{max} near saturation at H₂Q concentrations of 20–40 mm further increases at [H₂Q] > 40 mm. A kinetic model over the entire concentration range studied in Fig. 2 is not capable of accounting for all the features associated at higher H₂Q concentrations.

This work has presented insight into adduct formation of H_2Q –OH. Fast hydroxylation of H_2Q can only be explained by the presence of the ·OH radicals due to the fast reaction rate of ·OH with H_2O .¹⁰

This work was supported by the grant N°EV5V-CT9-0249 from the Commission of European Communities (OFES Contract N°95 00 31, Bern) and through INTAS Cooperation Project Brussels N° 094-642.

Footnote

(11)

† On leave of absence, Institute of Chemical Physics, Russian Academy of Sciences. Chernogolovka 142432, Moscow Region, Russia.

References

- 1 V. Balzani and V. Carassiti, in *Photochemistry of Coordination Compounds*, Academic Press, London, 1970.
- 2 C. Hatchard and C. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518.
- 3 G. Cooper and B. DeGraff, J. Phys. Chem., 1971, 75, 2897.
- 4 A. A. Safarzadeh-Amiri, J. Bolton and S. Carter, J. Adv. Oxidation Technol., 1996, 1, 18.
- 5 V. Nadtochenko and J. Kiwi, Photochem. Photobiol. A, 1996, 99, 145.
- 6 Y. Zuo and J. Hoigné, J. Environ. Sci. Technol., 1992, 26, 1014.
- 7 D. Sawyer, K. Chang , A. Llobet, Ch. Redman and D. Barton, J. Am. Chem. Soc., 1993, **115**, 5817.
- 8 J. Kiwi and M. Grätzel, J. Phys. Chem., 1980, 84, 1503.
- 9 C. Walling, Acc. Chem. Res., 1975, 8, 125.
- 10 E. Adams and B. Michael, Trans. Faraday. Soc., 1967, 63, 1171.
- 11 G. Buxton, W. Helman and A. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513.
- 12 Y. Sun and J. Pignatello, Environ. Sci. Technol., 1993, 27, 304.
- 13 D. Sedlak and J. Hoigné, Atmos. Environ., 1993, 27, 2173.

Received, 21st August 1996; Com. 6/05826D

42 Chem. Commun., 1997