## Novel anion binding selectivity trends exhibited by new dinuclear rhenium(i), ruthenium(ii) and osmium(ii) bipyridyl cleft-type receptors

Paul D. Beer,\*a<sup>+</sup> Simon W. Dent,<sup>a</sup> Gerald S. Hobbs<sup>a</sup> and Trevor J. Wear<sup>b</sup>

<sup>a</sup> Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR <sup>b</sup> Kodak Ltd, Headstone Drive, Harrow, Middlesex, UK HA1 4TY

## Novel dinuclear rhenium(1), ruthenium(11) and osmium(11) bipyridyl cleft-type receptor systems exhibit remarkable selectivity for dihydrogenphosphate over halide anions dictated by the nature of the bridging linkage and the transition-metal Lewis-acidic centre.

Anions are of crucial importance in many essential chemical and biochemical processes and therefore their binding and recognition is presently the subject of intensive research.<sup>1</sup> To date, a number of research groups have designed and synthesised anion binding reagents that use either favourable hydrogen-bonding interactions alone,<sup>2,3</sup> or hydrogen-bonding interactions in conjunction with electrostatic forces4-6 to coordinate and, in some instances, sense anions. Examples of the latter which have been particularly successful in this respect are amide containing cobaltocenium<sup>7,8</sup> and ruthenium(ii) poly-pyridyl molecules.<sup>9–11</sup> In an effort to enhance selective anion recognition through the design of new cooperative polymetallic Lewis-acidic systems, we report here the synthesis of novel dinuclear transition-metal bipyridyl, cleft-type receptors whose remarkable selectivity for the dihydrogenphosphate anion over halide anions is profoundly influenced by the nature of the bridging linkage, and the electronic character of the transitionmetal Lewis-acidic centre.

The reaction of 4-carboxy-4'-methyl-2,2'-bipyridine<sup>12</sup> or 4-carbonyl-4'-ethoxycarbonyl-2,2'-bipyridine<sup>13</sup> with thionyl chloride afforded the acid chlorides **1** and **2** respectively in quantitative yields. The condensation of 2 equiv. of **1** or **2** with 1 equiv. of diamine in dichloromethane solution afforded the new 'cleft'-type bipyridyl (bpy) ligands **3–6** in excellent yields (Scheme 1). The free ligands were chelated to the positively charged  $[M(bpy)_2]^{2+}$  fragment (M = Ru, Os) unit by reaction with either 2 equiv. of *cis*-[Ru(bpy)\_2Cl\_2]·2H\_2O<sup>14</sup> or *cis*-[Os(bpy)\_2Cl\_2]<sup>15</sup> in ethanol–water–acetic acid. The mixed ruthenium–osmium receptor, Ru–**6b**–Os, was prepared by reaction of ligand **6b** with 1 equiv. of *cis*-[Ru(bpy)\_2Cl\_2]·2H\_2O, followed by 1 equiv. of *cis*-[Os(bpy)\_2Cl\_2]. The crude products were purified by column chromatography on Sephadex LH-20 and converted to the hexafluorophosphate salts with an excess of aqueous NH<sub>4</sub>PF<sub>6</sub> (Scheme 2). The rhenium(i) receptor, Re– **6b**–Re, was prepared by reaction of the free ligand **6b** with 2 equiv. of [Re(CO)<sub>5</sub>Br] in thf and purified by recrystallisation from acetone–diethyl ether (Scheme 3).<sup>‡</sup>

Proton NMR titration experiments with Cl<sup>-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> anions were carried out in  $(CD_3)_2SO$  solution and revealed significant downfield shifts in the receptors' amide and 3,3'-bpy protons. For example, the amide protons of Ru–**6b**–Ru were perturbed by 0.93 ppm and the 3,3'-bpy protons by 0.84 ppm after the addition of an excess of tetrabutylammonium dihydrogenphosphate. In all cases the resulting titration curves (for example, Fig. 1) suggest complexes with a 1:1 receptor: anion stoichiometry are formed in solution. Stability constants were calculated from the titration data using the EQNMR computer program<sup>16</sup> and the values are presented in Table 1.§

Clearly the nature of the bridging linkage has a dramatic influence on the anion binding strength and selectivity these dinuclear cleft-type receptors display. Of particular note is the



Scheme 1



remarkable increase in the magnitude of stability constant of  $H_2PO_4^-$  that results from simply altering the linkage from *m*-phenylene Ru–3–Ru ( $K = 55 \text{ m}^{-1}$ ) to *p*-phenylene Ru–4–Ru ( $K = 4320 \text{ m}^{-1}$ ), with the halide stability constant values remaining virtually unchanged. In addition, whereas the ethylbridged receptor Ru–5–Ru forms an extremely weak complex



Molar equivalents of  $H_2PO_4^-$ Fig. 1 <sup>1</sup>H NMR titration curve of Ru-6b-Ru with NBu<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> in (CD<sub>3</sub>)<sub>2</sub>SO

3

5

6

2

Table 1 Stability constant data for dinuclear cleft-anion receptors in  $(\mbox{CD}_3)_2\mbox{SO}$ 

| Receptor          | $K (Cl^{-})^{a,b/}$<br>m <sup>-1</sup> | $K (\mathrm{Br}^{-})^{a,b/m}$ m <sup>-1</sup> | $\begin{array}{l} K \ (\mathrm{H_2PO_4^{-}})^{a,b/} \\ \mathrm{m^{-1}} \end{array}$ |
|-------------------|----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|
| Ru– <b>3</b> –Ru  | 25                                     | 45                                            | 55                                                                                  |
| Ru–4–Ru           | 55                                     | 40                                            | 4 3 2 0                                                                             |
| Ru– <b>5</b> –Ru  | 70                                     | 60                                            | 10                                                                                  |
| Ru– <b>6a</b> –Ru | 245                                    | 170                                           | 19700                                                                               |
| Re-6b-Re          | 120                                    | <i>c</i>                                      | 1820                                                                                |
| Ru–6b–Ru          | 310                                    | 220                                           | 15480                                                                               |
| Ru-6b-Os          | 440                                    | <i>C</i>                                      | 22150                                                                               |
| Os-6b-Os          | 825                                    | c                                             | > 30 000                                                                            |

 $^a$  Average for a mide and bpy protons.  $^b$  Errors estimated to be  $<10\%.\,^c$  Not calculated. with  $H_2PO_4^-$  and is Cl<sup>-</sup> selective, the 2,2'-dimethyl-1,3propane-bridged analogue, Ru–**6a**–Ru forms an extremely strong and selective complex with  $H_2PO_4^-$ . Comparing Ru–**6a**– Ru and Ru–**6b**–Ru, it is also of interest to note there is a significant 4'-bipyridyl substituent effect, with  $H_2PO_4^-$  anions favouring the ester containing receptor and chloride the methyl containing one.

Table 1 also demonstrates that the nature of the bipyridylcoordinated transition-metal centre strikingly dictates the strength and degree of anion recognition selectivity. With both  $H_2PO_4^-$  and Cl<sup>-</sup> anionic guest species the stability constants increase in magnitude in the order Re–**6b**–Re < Ru–**6b**–Ru < Ru–**6b**–Os < Os–**6b**–Os. From electrostatic considerations it is perhaps not surprising the neutral bis-rhenium(i) receptor forms the relatively weaker anion complexes. However, what is unexpected is the dramatic increase in magnitude of stability constant for the osmium-containing receptors, especially in respect to  $H_2PO_4^-$  complexation. This observation suggests the (bpy)<sub>2</sub>Os<sup>2+</sup> moiety is a particularly efficient Lewis-acidic centre to incorporate into this new cleft-type class of transition-metal bipyridyl amide anion receptor.

We thank Kodak Ltd for a studentship (S. W. D.) and Johnson Matthey for the generous loan of ruthenium and osmium salts.

## Footnotes

† E-mail: beer%server.icl.@ox.ac.uk

http://www.ncl.ox.ac.uk/icl/beer.html

 $\ddagger$  All new compounds were fully characterised by elemental analysis,  ${}^1\mathrm{H}$  and  ${}^{13}\mathrm{C}$  NMR and FABMS.

¶ The addition of chloride or dihydrogenphosphate anions to  $(CD_3)_2SO$  solutions of  $[M(bpy)_3)][PF_6]_2$  (M = Ru, Os) had no effect on the <sup>1</sup>H NMR spectrum. The metal-free bipyridyl ligands exhibited extremely weak and insignificant interactions with both chloride and dihydrogenphosphate anions in  $(CD_3)_2SO$ .

## References

- 1 B. Dietrich, Pure Appl. Chem., 1993, 65, 1457.
- 2 A. M. Kelly-Rowley, V. M. Lynch and E. V. Ansyln, J. Am. Chem. Soc., 1995, 117, 3438.
- 3 P. A. Gale, J. L. Sessler, V. Král and V. Lynch, J. Am. Chem. Soc., 1996, 118, 5140.
- 4 P. D. Beer, C. A. Dickson, N. C. Fletcher, A. J. Goulden, A. Grieve, J. Hodacova and T. J. Wear, J. Chem. Soc., Chem. Commun., 1993, 828.
- 5 V. Král, A. Andrievsky and J. L. Sessler, J. Am. Chem. Soc., 1995, 117, 2953.
- 6 N. Ohata, H. Masuda and O. Yamauchi, Angew. Chem., Int. Ed. Engl., 1996, 35, 531.
- 7 P. D. Beer, C. Hazelwood, D. Hesek, J. Hodacova and S. E. Stokes, J. Chem. Soc., Dalton Trans., 1993, 1327.
- 8 P. D. Beer, M. G. B. Drew, A. R. Graydon, D. K. Smith and S. E. Stokes, J. Chem. Soc., Dalton Trans., 1995, 403.
- 9 P. D. Beer, S. W. Dent and T. J. Wear, J. Chem. Soc., Dalton Trans., 1996, 2341.
- 10 F. Szemes, D. Hesek, Z. Chen, S. W. Dent, M. G. B. Drew, A. J. Goulden, A. R. Graydon, A. Grieve, R. J. Mortimer, J. S. Weightman and P. D. Beer, *Inorg. Chem.*, 1996, **35**, 5868.
- 11 M. S. Goodman, V. Jubian and A. D. Hamilton, *Tetrahedron Lett.*, 1995, 36, 2551.
- 12 D. G. McCafferty, B. M. Bishop, C. G. Wall, S. G. Hughes, S. L. Mecklenberg, T. J. Meyer and B. W. Erickson, *Tetrahedron*, 1995, 51, 1093.
- 13 G. Vériot, J.-P. Dutasta, G. Matouzenko and A. Collet, *Tetrahedron*, 1995, **51**, 389.
- 14 B. P. Sullivan, D. J. Salmon and T. J. Meyer, *Inorg. Chem.*, 1978, 17, 3334.
- 15 P. A. Lay, A. M. Sargeson and H. Taube, *Inorg. Synth.*, 1986, 24, 291.
- 16 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311.
- Received, 17th October 1996; Com. 6/07086H

7.0

0