Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts

Tarek M. Salama,[†] Ryuichiro Ohnishi and Masaru Ichikawa*

Catalysis Research Center, Hokkaido University, Sapporo 060, Japan

A significant enhancement of the selective reduction of nitrogen oxide by H_2 is produced in the presence of oxygen over Au/NaY and Au/ZSM-5 catalysts by forming NO₂ and N₂O₄ intermediates, which are eventually reduced to N₂.

More efficient engine performance would be desirable by using higher air-fuel ratios than those permitted by the 'window' required for conventional three-way catalysts.¹ Thus, there is much interest in the O₂-assisted reduction of nitric oxide by hydrocarbons such as methane and propane on Cu/ZSM-52 and Pt, Co, Ni and Fe exchanged ZSM-5;3 however, synergism effected by added oxygen in NO decomposition and reduction with hydrocarbons has not been observed. Although gold has been recognized to be poorly active as a catalyst, Haruta et al.4 have recently found that highly dispersed Au particles on α -Fe₂O₃ and Co₃O₄ exhibit high activity for CO and H₂ oxidation at low temperatures. Recently, we reported the catalytic reduction of NO by $\rm CO^5$ and $\rm H_2^6$ over Au/NaY. Interestingly, the NO + CO reaction did proceed marginally at lower temperatures, e.g. 473-623 K, while adding H₂ significantly promoted the reaction on Au/NaY, where it assisted N-O dissociation with the formation of the intermediate NCO (with characteristic IR bands at 2280–2240 cm⁻¹).⁵ The intermediate was converted into N₂ and CO₂ by interactions with NO in the gas phase. Here, we describe for the first time the remarkable enhancement of the selective reduction of NO by H₂ in the presence of oxygen over Au/NaY and Au/ZSM-5. The possible mechanism of O2-assisted NO reduction by H2 was also studied by means of *in situ* FTIR in order to identify the intermediates formed.

Au/NaY (Si/Al = 5.6; Linde, LZY-52, surface area 900 $m^2 g^{-1}$) and Au/ZSM-5 (Si/Al = 23.8; Tosoh Co. Ltd, surface area 1000 $m^2 g^{-1}$) samples were prepared by vaporization of AuCl₃ (Strem Chemical, 99% purity) into each zeolite, according to the monolayer dispersion technique.⁷ The resulting AuCl₃ encapsulated in NaY or ZSM-5 was evidently reduced to AuCl by the extraframework hydroxy groups in the zeolites upon thermal treatment in vacuum at 338 K for 24 h. The catalysts contained 5% *m/m* Au, according to ICP analysis, and were characterized by EXAFS, XPS and XRD techniques.^{7,8}

The catalytic performances in the reduction of nitric oxide by hydrogen in the presence and absence of oxygen were studied at atmospheric pressure in the steady-state flow mode. Four streams of NO–He, H₂, O₂ and He were supplied by mixing in a chamber using mass flow controller units to obtain a feed-gas mixture of 1375 ppm NO, 1.5% H₂ and 0.09–0.7% O₂ balanced with He at a total flow rate of 28 ml min⁻¹. Each catalyst (100 mg) was charged in a Pyrex glass tubular reactor. The stoichiometry of the feed stream was defined by $S = ([NO] +2[O_2])/[H_2]$ at zero time. The reactor effluent gas was sampled and analysed by on-line gas chromatography equipped with a thermal conductivity detector, using molecular sieve 5A and porapak-Q columns. Prior to the NO– H₂–O₂ reaction, the catalyst was reduced in a flowing gas mixture of 10% H₂ in He at 623 K. The catalytic activity was expressed in terms of percentage conversion of NO to N₂ as a function of the reaction time and S.

The selective reduction of NO by H₂ into N₂ proceeded in the temperature range 373-673 K over Au/NaY and Au/ZSM-5. As shown in Fig. 1, the NO conversion to N2 was markedly enhanced by 5–10 times by the addition of oxygen (0.2 % v/v) in the feed stream. Therefore, oxygen in the reaction gas stream plays a synergetic role in the NO-H₂ reaction. All the runs showed almost analogous trends of promotion by adding oxygen. The effect is greater on Au/NaY (*a*) than for Au/ZSM-5 (b) at the same oxygen level. The data militate against the claim that Cu/ZSM-5 is better than Cu/NaY for the oxygen promotion in NO reduction by hydrocarbons.⁹ Control transient response experiments with pulse addition of O2 into an NO-H2 stream revealed that the differences in NO conversions obtained are related to competing reactions of NO and H₂ with O₂ over the gold catalysts. The oxygen promotion was linearly proportional to the oxygen concentration (0.09-0.21 %). After 2 h reaction time, the oxygen supply was turned off which resulted in a dramatic loss of the NO conversion (Fig. 1).

In the presence of O_2 , NO reduction by hydrogen selectively goes to N_2 formation and neither NH₃ nor N_2O were detected over Au/NaY and Au/ZSM-5 catalysts in the effluent stream at the outlet. By contrast, Hastvan *et al.*,¹⁰ have reported for the same reaction over Pd-MoO₃/ γ -Al₂O₃ catalysts that NH₃ and N_2O are the major products. It has also been observed¹¹ that a better N_2 selectivity in the NO reduction by hydrogen is achieved by combining precious metals (Pt, Pd and Rh) and transition-metal oxides on Al₂O₃.

To gain insight into the mechanism of oxygen promotion in the selective NO redution by hydrogen, *in situ* FTIR studies were performed over Au/NaY and Au/ZSM-5 samples. *In situ* IR absorption spectra were recorded over the temperature range 474–573 K. A self-supporting wafer was placed in an IR cell

Fig. 1 NO conversion (mol%) to N₂ as a function of time and O₂ (0.2% v/v) switch on–off in the NO (0.14% v/v)–H₂(1.5% v/v) flow mode reaction (flow rate = 28 ml min⁻¹) over Au/NaY (5% mass Au loading) (*a*) and Au/ZSM-5 (5% mass Au loading) (*b*) at 523 K, respectively

Chem. Commun., 1997 105

equipped with NaCl windows. The sample was reduced in circulating hydrogen (50 Torr) at 473 K before conducting the NO–H₂–O₂ reaction at the desired temperature. IR spectra were recorded with a Shimadzu 4100 FT IR double- beam spectrometer with a resolution of 2 cm^{-1} .

¹⁵NO₂ and ¹⁵N₂O₄ were produced by the addition of O₂ to ¹⁵NO (1:1 ν/ν) at 474 K on Au/ZSM-5. As shown in Fig. 2, after the NO–O₂ system reached a steady state [Fig. 2(*a*)], a pair of bands with an intensity ratio of *ca*. 1:1 developed at 1780 and 1760 cm⁻¹ arising from the stretching mode of monomeric ¹⁵N–O on Au^I and Au^IO, respectively. These bands were similarly assigned by Valyon and Hall⁹ in NO chemisorption on Cu/ZSM-5. We did not observe such terminal NO species in the absence of oxygen on the Au/NaY and Au/ZSM-5 samples at identical NO chemisorption conditions. This implies that oxygen acts as a promoter for NO chemisorption on Au. The respective shift to lower wavenumbers (*ca*. 30 cm⁻¹) compared to those for ¹⁴NO at 1811 and 1792 cm⁻¹ indicates that they are mononitrosyl species.

After heating the samples to 573 K, the ill resolved doublet bonds assigned to ${}^{15}N_2O_4$ completely vanished and were

Fig. 2 *In situ* IR spectra obtained on Au/ZSM-5 (5% Au loading) from (*a*) ¹⁵NO (40 Torr)–O₂ (40 Torr) reaction at 474 K, (*b*) obtained upon increasing the reaction temperature to 573 K for 10 min, and (*c*) after admission of H₂ (100 Torr) at 573 K for 20 min

Table 1 IR bands from the NO–H $_2$ –O $_2$ reaction on Au/ZSM-5 and their assignment

ν/cm^{-1}				
¹⁴ NO ^a	$^{15}\mathrm{NO}^{a}$	Calc. ^b	Assignment	Ref.
1811	1780	1781	NO accessible to Au ^I	This work
1792	1760	1762	NO on Au ^I carrying extralattice oxygen	This work
1755	1715	1714	Solid-state N_2O_4	13
1744	1704	1702	Gas-phase N_2O_4	13
1630	1590	1591		14
1612	1576	1574	NO_2 and NO_2^-	14
1597	1556	1557	j	14

^{*a*} NO stretching vibration. ^{*b*} Calculated using $\nu_{15} = \nu_{14} (\mu_{14}/\mu_{15})$ where μ_{14} is the reduced mass for ¹⁴NO and ¹⁶O and μ_{15} the reduced mass for ¹⁵NO and ¹⁶O.

replaced by species at 1780 and 1760 cm⁻¹ [Fig. 2(*b*)]. The ¹⁵NO₂ bands were also decreased in intensity but to a lesser extent. This leads us to conclude that ¹⁵N₂O₄ together with ¹⁵NO₂ species dissociated back to monomeric NO and NO(O) at higher temperatures. It was previously reported that NO₂ dissociates on Au to form coadsorbed NO_(a) and O_(a) with a kinetic-energy barrier of $E_d \ge 17$ kcal mol¹² (1 cal = 4.184 J). The assignments of the observed IR bands associated with nitrogen oxides are summarized in Table 1.

Subsequently, H₂ (100 Torr) was admitted to the reacting system [Fig. 2(*c*)], resulting in the complete disappearance of NO₂ and N₂O₄ species on Au/ZSM-5 with substantial formation of N₂ (*m*/*z* 28) and H₂O (band at 1644 cm⁻¹). Oxygen promotion in the selective reduction of NO by H₂ on Au/NaY and Au/ZSM-5 is proposed to proceed as follows:

$$2\text{NO} + 2\text{O}_{ads} \xrightarrow{\text{very fast}} [2\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4]_{ads}$$
$$N_2\text{O}_4(\text{NO}_2) + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$$
$$2\text{NO} + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$$

Bands assignable to N₂O and NH₃ were not detected by an *in* situ IR experiment in the presence of oxygen even when the reaction took place over a wide range of temperature. Nevertheless, we have previously reported that N₂O and adsorbed NH₄⁺ were partially detected as by-products due to NO dissociation in the NO–H₂ reaction over Au/NaY.⁵ Accordingly, the results suggest that oxygen surpresses the dissociation of NO on Au/NaY, while promoting the formation of oxygenated intermediates such as NO₂ and N₂O₄, which are readily reduced by hydrogen selectively to N₂. Moreover, it is noteworthy that the synergism effected in the presence of excess oxygen is produced by inhibiting the sintering of Au due to a facile redox process between Au^I and Au⁰ in NaY and ZSM-5 even under the reductive NO–H₂ atmosphere.

Footnote

[†] On leave from the Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.

References

- 1 T. J. Truex, R. A. Searle and D. C. Sun, Platinum Met. Rev., 1992, 36,
- 2 J. O. Petunchi, G. Still and H. K. Hall, *Appl. Catal. B: Environ.*, 1993, **2**, 303.
- 3 T. Li and J. N. Armer, US Pat. 5 149 512,1992, to Air Products and Chemicals, Inc.
- 4 M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301.
- 5 T. M. Salama, Y. Ohnishi and M. Ichikawa, J. Chem. Soc., Faraday Trans, 1996, 92, 301.
- 6 T. M. Salama, Y. Ohnishi, T. Shido and M. Ichikawa, J. Catal., 1996, 162, 169.
- 7 T. M. Salama, T. Shido, H. Minagawa and M. Ichikawa, J. Catal., 1995, 152, 322; S. L. Qiu, R. Ohnishi and M. Ichikawa, J. Chem. Soc., Chem. Commun., 1992, 1425.
- 8 T. M. Salama, T. Shido, Y. Ohnishi and M. Ichikawa, J. Phys. Chem., 1996, 100, 3688.
- 9 J. Valyon and W. K. Hall, J. Phys. Chem., 1993, 97, 1204.
- 10 I. Halasz, A. Brenner and M. Shelef, Catal. Lett., 1993, 18, 289.
- 11 Y. J. Mergler, A. van Aals and B. E. Nieuwenhuys, 207th National Meeting, American Chemical Society, 1994, vol. 39, p. 161.
- D. T. Wickham, B. A. Banse and B. E. Koel, *Catal. Lett.*, 1996, 6, 163.
- U. Schwalke, J. E. Parmeter and W. H. Weinberg, J. Chem. Phys., 1986, 84, 4036.
- 14 J. W. London and A. T. Bell, J. Catal., 1973, 31, 32.
- 15 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978, 3rd edn., p 9.

Received, 2nd October 1996; Com. 6/06761A