Selective stabilization of a bulged duplex of d(GCGAAACGC) oligonucleotide by thymine base-substituted naphthalene diimide

Shigeori Takenaka,*a Makoto Yokoyamab and Hiroki Kondob

^a Department of Chemical Science and Technology, Kyushu University, Fukuoka 812-81, Japan

^b Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka 820, Japan

A naphthalene diimide carrying thymine moieties at the termini of its substituentsstabilized specifically the bulged duplex of d(GCGAAACGC), which is rarely found under ordinary conditions.

Nucleic acids have a variety of higher-order structures, such as base bulge and hairpin, which are associated with many biological functions.¹ Compounds recognizing these structures are important for studying nucleic acid structure and can serve as new DNA-targeting agents. Many molecules have been synthesized to exhibit this.^{2–10} For example, a macrocyclic bisacridine developed by Lehn and co-workers showed a selective binding to the DNA hairpin of d(GCGAAACGC), named sA₃.¹⁰ We have shown that thymine base-substituted naphthalene diimide **1** has a high affinity for polyA.¹¹ It occurred to us that compound **1** might bind to the hairpin region of sA₃ specifically as well, since this oligonucleotide consists of single stranded adenines. Contrary to this expectation, however, **1** produced a bulged duplex rather than a hairpin structure on sA₃, as shown in Scheme 1.

In sA₃, the bulged structure is in equilibrium with a hairpin. The latter is the predominant species in solution under ordinary conditions, as exemplified by a melting profile in which two transition temperatures were observed.¹⁰ The higher melting temperature (T_{mH}) is attributed to intramolecular transition from a hairpin to random coil. The lower melting temperature (T_{mL}), which is rarely found and sA₃ concentration-dependent, is attributed to intermolecular transition from a bulged duplex to a hairpin.

Fig. 1(*a*) shows the melting curve of sA_3 with a major transition temperature at 54 °C due to the collapse of the hairpin

structure as described previously.10 Two transition temperatures appeared at about 18 and 60 °C in the presence of 1, and the lower temperature transition was raised with an increase in the amount of 1. Since the absorbance of 1 alone was independent of temperature over the 15-90 °C range, the lower transition temperature was attributed to T_{mL} . These data indicated that 1 can stabilize the bulged structure of sA_3 specifically, although it stabilized the hairpin structure as well, albeit to a smaller extent [ca. 6 °C, compare curves (i) and (ii) in Fig. 1(a)]. On the other hand, naphthalene diimide 2, without thymine moieties, showed a transition curve featuring mainly a rise in the $T_{\rm mH}$ to 80 °C. This behaviour of 2 was largely unaffected by the presence of thymine. Ordinary intercalators insert themselves between adjacent base pairs in double stranded nucleic acids, thus effecting stabilization.12 This is the case with 2, where the $T_{\rm mH}$ was raised by 26 °C when compared with the $T_{\rm mH}$ of sA₃ alone. In summary, **1** stabilizes the bulged duplex of sA_3 much more than its hairpin structure, whereas 2 stabilizes mainly the hairpin structure, as do other ordinary intercalators. This difference arises presumably because 1 can bridge the two DNA strands through hydrogen bonding of its thymines moieties with the adenine moieties of sA₃. We estimate that 50 and 10% of sA₃ assumes the bulged structure in

Fig. 1 Melting profiles for (*a*) sA₃ and (*b*) sT₃: (i) no additive; (ii) in the presence of **1**; (iii) in the presence of **2**. Carried out in 10 mm MES (2-morpholinoethanesulfonic acid) and 1 mm EDTA (ethylenediam-inetetraacetic acid) buffer (pH 6.25); oligonucleotide (in the double strand form) and additive concentration = $5.8 \mu m$.

Chem. Commun., 1997 115

the presence of an equimolar amount of 1 and 2, respectively, at 20 $^{\circ}$ C.

To investigate whether **1** can stabilize the bulged adenines specifically, the melting curve of d(GCGTTTCGC) (sT₃) was measured in the absence and presence of **1** or **2** under the same conditions [Fig. 1(*b*)]. This oligonucleotide showed two transition temperatures at *ca*. 15 and 60 °C, which can be attributed to the transition from a bulged duplex to hairpin and from a hairpin to random coil, respectively [(i) in Fig. 1(*b*)]. Neither the bulged duplex nor the hairpin was stabilized by **1**, whereas **2** stabilized the hairpin structure exclusively [(ii) and (iii) in Fig. 1(*b*)]. This result proves that **1** stabilizes the bulged adenines specifically.

The competitive binding to sA_3 of **1** and **2** with ethidium bromide was performed by monitoring ethidium fluorescence.

Fig. 2 Changes in the fluorescence intensity upon addition of ethidium bromide to (*a*) sA₃ and (*b*) sT₃: (\bigcirc) no additive; (\triangle) in the presence of **2**; (\bigcirc) in the presence of **1**. Carried out in 10 mm MES buffer (pH 6.25) containing 0.3% Me₂SO at 20 °C; oligonucleotide (in the double strand form) and additive concentration = 5.8 µm.

Addition of ethidium bromide to sA_3 increased the fluorescence intensity at 595 nm ($\lambda_{ex} = 546$ nm) at 20 °C as a result of binding to DNA as shown in Fig. 2(*a*). The fluorescence of ethidium bromide was suppressed with a mixture of sA_3 and **1** or **2**, and the quenching was more pronounced with **2** than with **1** [Fig. 2(*a*)]. On the other hand, **1** was not as effective as **2** in the quenching of the fluorescence of sT_3 -bound ethidium bromide [Fig. 2(*b*)], demonstrating that the binding of **1** with sT_3 is weaker than with sA_3 , whereas **2** can bind to both sA_3 and sT_3 equally well.

Since ethidium bromide binds to DNA by intercalation,¹³ those intercalators which bind to the double stranded region of DNA compete with ethidium bromide to suppress its fluorescence. It follows therefore that 2 binds mainly to the double stranded region of sA_3 , whereas 1 is away from such a region and binds mainly to the single stranded loop region. Both the bulge and hairpin structures of sA₃ have a loop, but the curvature of the loop is smaller for the bulge. Hence, the naphthalene diimide ring of 1 can stack more effectively with the adenine rings of the bulge. Moreover, since 1 possesses two thymine bases, it can hold together the two strands of sA₃ through complementary hydrogen bonding of the thymines with the adenines. We believe that this is the reason why **1** stabilizes the bulged structure of sA₃ specifically. Whatever the mechanism, this is the first example of the alteration of the secondary structure of an oligonucleotide using a small molecule.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

- M. Chastin and I. Tinoco, Jr., in *Progress in Nucleic Acids Research and Molecular Biology*, ed. W. E. Cohn and K. Moldave, Academic, New York, 1991, vol. 41, p. 131.
- 2 L. S. Ratmeyer, R. Vinayak, G. Zon and W. D. Wilson, J. Med. Chem., 1992, 35, 966.
- 3 J. L. Mergny, G. Duval-Valentin, C. H. Nguyen, L. Perrouault, B. Faucon, M. Rougee, T. B. Montenay-Garestier, E. Isagni and C. Hélène, *Science*, 1992, **256**, 1681.
- 4 W. D. Wilson, F. A. Tanious, S. Mizan, S. Yao, A. S. Kiselyov, G. Zon and L. Strekowski, *Biochemistry*, 1993, 32, 10614.
- 5 J. S. Lee, L. J. P. Latimer and K. J. Hampel, *Biochemistry*, 1993, **32**, 5591.
- 6 D. S. Pilch and K. J. Breslauer, Proc. Natl. Acad. Sci. USA, 1994, 91, 9332.
- 7 K. R. Fox, P. Polucci, T. C. Jenkins and S. Neidle, *Proc. Natl. Acad. Sci.* USA, 1995, **92**, 7887.
- 8 S. C. Zimmerman, C. R. Lamberson, M. Cory and T. A. Fairley, J. Am. Chem. Soc., 1989, **111**, 6805.
- 9 J. M. Veal, Y. Li, S. C. Zimmerman, C. R. Lamberson, M. Cory, G. Zon and W. D. Wilson, *Biochemistry*, 1990, 29, 10918.
- 10 A. Slama-Schwok, M.-P. Teulade-Fichou, J.-P. Vigneron, E. Taillandier and J.-M. Lehn, J. Am. Chem. Soc., 1995, 117, 6822.
- 11 S. Takenaka, M. Manabe, M. Yokoyama, M. Nishi, J. Tanaka and H. Kondo, *Chem. Commun.*, 1996, 379.
- 12 M. Cory, D. D. McKee, J. Kagan, D. W. Henry and J. Miller, J. Am. Chem. Soc., 1985, 107, 2528.
- 13 B. F. Cain, B. C. Baguley and W. A. Danny, J. Med. Chem., 1978, 21, 658.

Received, 28th October 1996; Com. 6/07303D