Different donor binding modes of the pincer ligand 2,6-bis[(diethylamino) methyl]phenyl: intermolecularly chelating in $Li[2,6-(NEt₂CH₂)₂C₆H₃]$ and both mono- and bi-dentate in BCl_2 {2-[$BCl_3(NEt_2CH_2)$]-6- $(NEt_2CH_2)C_6H_3$ }

Robert Schlengermann, Joachim Sieler, Svea Jelonek and Evamarie Hey-Hawkins*

Institut für Anorganische Chemie der Universität Leipzig, Talstrasse 35, D-04103 Leipzig, Germany

The reaction of dimeric $Li[2,6-(NEt₂CH₂)₂C₆H₃]$ **1** with BCI_3 **yields** $BCI_2\{2-[BCI_3(NEt_2CH_2)]-6-(NEt_2CH_2)C_6H_3\}$ **2**, **independent of the stoichiometric ratio (1:1 or 1:2) or reaction conditions (0 °C or boiling hexane).**

The lithium derivatives of monoanionic terdentate ligands 2,6-(NR_2CH_2)₂ C_6H_3 (R = Me, Et) are valuable starting materials for the preparation of transition-metal or main-group element derivatives.1 A variety of binding modes to late transition metals, *i.e*. as two-, four- and six-electron donor, have been observed.2 Intramolecular coordination of the amino group strongly stabilises these compounds.2 Thus, the intramolecularly stabilised five-coordinate 2,6-[bis(dialkylamino) methyl]phenyl derivatives $AIX_2[2,6-(NMe_2CH_2)_2C_6H_3]$ $(X = CI, H)³$ GaMe₂[2,6-(NMe₂CH₂)₂C₆H₃]⁴, InCl₂[2,6- $(NEt_2CH_2)_2C_6H_3$],⁵ InMe(Cl)[2,6-(NEt₂CH₂)₂C₆H₃],⁵ InEt₂-[2,6-(NEt₂CH₂)₂C₆H₃] $InR_2[2,6-(NMe_2CH_2)_2C_6H_3]$ $(R = Me, Et, Pr)$, are liquids or low-melting solids and far less air-sensitive than trimethyl compounds; they are therefore suitable replacements for MOVPE.^{4,5} Of the boron analogues,
only the boronic acid derivative $B(OH)_2[2,6$ only the boronic acid derivative $B(OH)_{2}[2,6 (NMe₂CH₂)₂C₆H₃$ ⁶ and the boronates B(OCH₂CR₂O)[2,6- $(NMe₂CH₂)₂C₆H₃$ (R = H, Ph), B(OCH₂CMe₂CH₂O)[2,6- $(NMe₂CH₂)₂C₆H₃$ ⁸ and B(OCH₂CHMeO)[2,6-(NMe₂CH₂)₂- C_6H_3 ,⁸ which were synthesised from boronic acid and diols, have been reported in the literature. Since base-stabilised arylboron dichloride derivatives would appear to be useful starting materials for the preparation of transition-metal boranediyl complexes,⁹ we attempted the preparation of these compounds.

The synthesis and *in situ* reactions of Li[2,6- $(NEt_2CH_2)_2C_6H_3$] **1** have been reported.† **1** (2.0 g, 7.8 mmol) reacts with BCl₃(OEt₂) (15.6 mmol) in hexane (25 ml) at 0 \degree C to give BCl_2 {2-[BCl₃(NEt₂CH₂)]-6-(NEt₂CH₂)C₆H₃} 2 in almost quantitative yield, independent of the stoichiometric ratio or reaction conditions (Scheme 1); formation of a $BCI₃$ free product was not observed. This suggests that **2** is the thermodynamically favoured product. In the comparable reaction of **1** with InCl₃, InCl₂[2,6-(NEt₂CH₂)₂C₆H₃] is obtained, in which both amino groups are coordinated to the In atom.⁵

In addition to being indispensable reagents for preparative organometallic and organic chemistry, lithium compounds often exhibit fascinating structures in the solid state.10 In the compounds studied up to now, the Li atom exhibits a pronounced tendency to interact with electron-rich ligands or

Scheme 1 *Reagents and conditions*: i, BuⁿLi, hexane, 0 °C, 12 h at room temp., 72%; ii, BCl₃, hexane, 0 °C, 99%

donor molecules, or aggregation through electron-deficient Li– C bonds is observed, leading to a large variety of structures.10 A general principle for the dimerisation of lithium reagents has been described in the literature.¹¹

In the solid state $Li[2,6-(NEt₂CH₂)₂C₆H₃]$ **1** consists of dimeric units in which the Li atoms are bonded to the two *ipso*-C atoms of the aryl rings by three-centre–two-electron bonds; the molecule has C_2 symmetry (Fig. 1). \ddagger The tetrahedral coordination of Li is completed by intra- and inter-molecular interactions with one amino group of each aryl ligand. The *ipso*-C atoms, C(1) and C(10), have tetrahedral rather than planar geometry. The structural parameters of **1** are in agreement with those of other structurally characterised dimeric lithium aryls.12§ The structural data [Li–C, Li···Li, Li–N, bite angle $N(2)$ –Li(1)–C(10) and $N(1)$ –Li(1)–C(1)] as well as the overall structure $(C_2$ symmetry) and geometry of 1 [angle between
planes $C(1) - C(2a)/C_2Li_2$ 56.8(1)°, $C(10) - C(14a)/C_2Li_2$ planes C(1)–C(2a)/C₂Li₂ 56.8(1)°, C(10)–C(14a)/C₂Li₂
56.9(2)°, C(1)–C(2a)/C(10)-C(14a) 66.20(8)°] are nearly $C(1)$ –C(2a)/C(10)–C(14a) 66.20(8)°] are nearly identical to those of dimeric {2,3,5,6-tetrakis- [(dimethylamino)methyl]phenyl}lithium.13 Other related lithium derivatives with two intra- and inter-molecularly chelating *ortho* substituents are tetrameric Li[2-(NMe₂CH₂)C₆H₄]¹⁴ and $Li[2,6-(NMe₂CH₂)₂C₆H₃]_{6,14}$ which is dimeric according to a molecular mass determination.

Like ${Li[2,6-(NMe₂CH₂)₂C₆H₃]}₂,¹⁴ dimeric 1 has $C_2$$ symmetry. Therefore the $C-CH_2-N$ and CH_2CH_3 groups are

Fig. 1 Molecular structure of dimeric Li $[2,6-(NEt₂CH₂)₂C₆H₃]$ 1 showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP).18 Selected bond lengths (Å) and angles (°): Li(1)– N(1) 2.178(3), Li(1)–N(2) 2.164(3), Li(1)–C(1) 2.228(3), Li(1)–C(10) 2.231(3), Li(1)···Li(1a) 2.483(5); N(2)–Li(1)–N(1) 111.01(12), N(2)– Li(1)–C(1) 134.67(13), N(1)–Li(1)-C(1) 86.07(10), N(2)–Li(1)–C(10) 85.92(10), N(1)–Li(1)–C(10) 134.27(13), C(1)–Li(1)–C(10) 112.32(12), Li(1)–C(1)–Li(1a) 67.73(14), Li(1)–C(10)–Li(1a) 67.62(14), C(2)–C(1)– C(2a) $114.9(2)$, C(11)–C(10)–C(11a) 114.4(2).

*Chem. Commun***., 1997 197**

diastereotopic (below 16 °C); above 16 °C they become homotopic as the molecule becomes fluctional ($\Delta G^{\ddagger} = 54.6 \pm$ 0.2 kJ mol⁻¹).¹⁵

Crystals of 2 were obtained from dichloromethane at -25 °C. The molecular structure of **2** is shown in Fig. 2.‡ In **2**, an arylboron dichloride is intramolecularly stabilised by interaction with one amino group, giving a five-membered B–C–C– C–N ring (BC₃ coplanar, N lies 0.5 Å below this plane). This leads to a distorted tetrahedral environment at $B(1)$ [small $C(1)$ – B(1)–N(2) bite angle and large $C(1)$ –B(1)–Cl(1) bond angle]. The structural data of the C–C–C–N–B five-membered ring in 2 are similar to those of $B(OCH_2CPh_2O)[2,6 (NMe₂CH₂)₂C₆H₃$ ⁷. Due to the coordination number of five in InMe(Cl)[2,6-(NEt₂CH₂)₂C₆H₃], the C–In–N bite angles are even smaller $[72.7(1), 72.3(1)^\circ]$ ⁵ than in **2** and the boronate. It is well known that BCl₃ forms stable adducts with ethers and amines, and the geometry of the $BCl₃$ group which is coordinated by the second amino group in **2** is comparable to that of undistorted tetrahedral $BCI_3(NMe_3)$.¹⁶ To our knowledge, **2** is the first example where the pincer ligand $2,6-(NEt₂CH₂)₂C₆H₃$ acts as a monodentate ligand towards one molecule and as a bidentate ligand towards another. The only remotely related example is $[WL(CO)₃(NCMe)] [L = 2 Ph_3SnC_6H_4CH_2NMe)CH_2CH_2NMe_2$], in which L exhibits η^2 -N,N' coordination to W and η^1 -C coordination to Sn.¹⁷
While the related boronates B(OCH₂CR₂

 $B(OCH₂CR₂O)[2,6 (NMe₂CH₂)₂C₆H₃$ (R = H, Ph) are dynamic in solution due to facile exchange of amine ligands,7 in **2** this process is not possible due to the coordination of one amino group to the \overline{y} (aryl)BCl₂ fragment, while the other is coordinated to a BCl₃ molecule. Thus, in the proton NMR spectrum of **2** (in [2H8]thf),¶ the non-equivalence of the CC*HH*N (AB system) and NCHHCH₃ protons (one q for each H of both methylene groups) indicates that the five-membered chelate ring C–C–C– N–B is rigid in solution. For the C-CH₂N(BCl₃)(CH₂CH₃)₂ group, these are equivalent (one s, one q). The chemical shifts and coupling patterns are solvent dependent.¶

The results presented here show that Li[2,6- $(NEt_2CH_2)_2C_6H_3$] $\hat{1}$ is dimeric in the solid state with C_2 symmetry. The reaction of 1 with $BCl₃$ yields the novel donorstabilised arylboron dichloride, BCI_2 {2-[BCl₃(NEt₂CH₂)]- $6-(NEt_2CH_2)\dot{C}_6H_3$ **2**; a BCl₃-free compound was not obtained. We are presently investigating the chemistry of **2** and its use in the preparation of transition-metal boranyl or boranediyl complexes.

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (R. S.) and the Fonds der Chemischen Industrie; the company Chemetall GmbH has provided a generous donation of lithium alkyls, and Hoechst AG a generous donation of chemicals.

Fig. 2 Molecular structure of $BCl_2(2-[BCl_3(NEt_2CH_2)] 6-(NEt₂CH₂)C₆H₃}$ 2 showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP).18 Selected bond lengths (Å) and angles (°): B(1)–Cl(1) 1.842(4), B(1)–Cl(2) 1.882(5), B(2)– Cl(3) 1.855(5), B(2)–Cl(4) 1.852(5), B(2)–Cl(5) 1.841(5), B(1)–N(2) 1.649(5), B(2)–N(1) 1.639(5), B(1)–C(1) 1.598(5); C(7)–N(2)–B(1) 103.3(3), C(1)–B(1)–N(2) 100.5(3), C(2)–C(1)–C(6) 119.1(3), C(2)–C(1)– B(1) $107.7(3)$, C(6)–C(1)–B(1) 132.1(3).

Footnotes

 \dagger Li[2,6-(NEt₂CH₂)₂C₆H₃] **1** was prepared according to the literature procedure.4,5 Recrystallisation from hexane gave colourless crystals (72%).

 $\frac{1}{4}$ *Crystal data*: for **1**: C₃₂H₅₄Li₂N₄, *M* = 508.68, white crystals, 0.5 \times 0.5 \times 0.5 mm, orthorhombic, space group *Pbcn* (no. 60), $T = 200(2)$ K, $a = 13.4959(9)$, $b = 16.9164(11)$, $c = 14.1022(9)$ Å, $U = 3219.6(4)$ Å³. $Z = 4$, $D_c = 1.049$ g cm⁻³, $F(000) = 1120$, $\mu(\text{Mo-K}\alpha) = 0.060$ mm⁻¹, 13028 reflections collected with $2 < \theta < 26^{\circ}$; of these 2956 were independent; 283 parameters, refinements converge to $R_1 = 0.0477$, $wR_2 = 0.1004$ [for reflections with $I > 2\sigma(I)$], $R_1 = 0.0656$, $wR_2 = 0.1123$ (all data). **2**: C₁₆H₂₇B₂Cl₅N₂, *M* = 446.27, white crystals, 0.15 \times 0.10 \times 0.10 mm, triclinic, space group P_1^T (no. 2), $T = 260(2)$ K, $a = 7.069(2)$, *b* = 10.837(5), *c* = 14.090(5) \AA , α = 90.09(2), $\beta = 104.16(2), \gamma = 97.35(2)^\circ, U = 1037.3(7) \text{ Å}^3, Z = 2, D_c = 1.429$ g cm⁻³, $F(000) = 464$, μ (Mo-K α) = 0.702 mm⁻¹, 4656 reflections collected with $1.5 < \theta < 26^{\circ}$; of these 3409 were independent; 334 parameters, refinements converge to $R_1 = 0.0460$, $wR_2 = 0.0889$ [for reflections with $I > 2\sigma(I)$], $R_1 = 0.0752$, $wR_2 = 0.1082$ (all data).¹⁸ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/315.

§ In a structurally characterised dimeric aryllithium, Li–C ranges from 2.19 to 2.28 Å, Li···Li from 2.37 to 2.66 Å, and Li–C–Li from 64.2 to 67.4.14 ¶ Full spectroscopic discussion will be given in the full paper.

References

- 1 A. A. H. van der Zeijden and G. van Koten, *Inorg. Chem*., 1986, **25**, 4723; A. L. Wayda and R. D. Rogers, *Organometallics*, 1985, **4**, 1440; F. A. Cotton and G. N. Mott, *Organometallics*, 1982, **1**, 38; L. E. Manzer, *J. Am. Chem*. *Soc.,* 1978, **100**, 8068; and references therein.
- 2 G. van Koten, *Pure Appl. Chem.,* 1989, **61**, 1681; 1990, **62**, 1155; J. T. B. H. Jastrzebski and G. van Koten, *Adv. Organomet. Chem*., 1993, **35**, 241.
- 3 L. Contreras, A. H. Cowley, F. P. Gabbai, R. A. Jones, C. J. Carrano and M. R. Bond, *J. Organomet. Chem.*, 1995, **489**, C1.
- 4 H. Schumann, U. Hartmann and W. Wassermann, *Chem. Ber.*, 1991, **124**, 1567.
- 5 H. Schumann, W. Wassermann and A. Dietrich, *J. Organomet. Chem.,* 1989, **365**, 11.
- 6 M. Lauer and G. Wulff, *J. Organomet. Chem.,* 1983, **256**, 1.
- 7 S. Toyota, T. Futawaka, H. Ikeda and M. Oki, *J. Chem. Soc., Chem. Commun.,* 1995, 2499.
- 8 M. Lauer, H. Böhnke, R. Grotstollen, M. Salehnia and G. Wulff, *Chem. Ber.,* 1985, **118**, 246.
- 9 The only known examples of transition-metal boranediyl complexes are [(CO)₄FeB(NMe₂)] (G. Schmid, W. Petz and H. Nöth, *Inorg. Chim. Acta*, 1970, **4**, 423) and $[{(C_5H_4R)(CO)_2Mn}_2(\mu-BX)]$, with X $=$ NMe₂, R = H, Me; X = Bu^t, R = Me (H. Braunschweiger and T. Wagner, *Angew. Chem.,* 1995, **107**, 904).
- 10 W. N. Setzer and P. v. Rague-Schleyer, *Adv. Organomet. Chem.,* 1985, **24**, 353 and references therein.
- 11 P. v. Rague-Schleyer, R. Hacker, H. Dietrich and W. Mahdi, *J. Chem. Soc., Chem. Commun.,* 1985, 662.
- 12 S. Harder, J. Boersma, L. Brandsma, J. A. Kanters, W. Bauer and P. v. Rague-Schleyer, *Organometallics*, 1989, **8**, 1696; D. Thoennes and E. Weiss, *Chem*. *Ber.,* 1978, **111**, 3157; J. T. B. H. Jastrzebski, G. van Koten, K. Goubitz, C. Arlen and M. Pfeffer, *J. Organomet. Chem.,* 1983, **246**, C75; M. A. Beno, H. Hope, M. M. Olmstead and P. P. Power, *Organometallics*, 1985, **4**, 2117.
- 13 A. A. H. van der Zeijden and G. van Koten, *Recl. Trav. Chim. Pays-Bas*, 1988, **107**, 431.
- 14 J. T. B. H. Jastrzebski, G. van Koten, M. Konijn and C. H. Stam, *J. Am. Chem. Soc.,* 1982, **104**, 5490.
- 15 M. Hesse, H. Meier and B. Zeeh, *Spektroskopische Methoden in der Organischen Chemie*, Georg-Thieme-Verlag, Stuttgart–New York, 4th edn., 1991.
- 16 H. Hess, *Acta Crystallogr., Sect. B,* 1969, **25**, 2338.
- 17 B. P. Buffin, M. J. Poss, A. M. Arif and T. G. Richmond, *Inorg. Chem.,* 1993, **32**, 3805.
- 18 SHELXTL PLUS, Siemens Analytical X-ray Instruments Inc., 1990, XS: Program for Crystal Structure Solution, XL: Program for Crystal Structure Determination, XP: Interactive Molecular Graphics.

Received, 30th September 1996; Com. 6/06670D

198 *Chem. Commun***., 1997**