Nickel(0)-catalysed diyne–maleimide double-cycloaddition copolymerisation to form poly(bicyclo[2.2.2]oct-7-ene)s

Tetsuo Tsuda,*a Akihiko Tobisawa,^b Haruna Mizuno^b and Atsushi Takeda^b

^a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan ^b Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

A nickel(0) catalyst effects the double-cycloaddition copolymerisation of diynes with *N*-substituted maleimides to form poly(bicyclo[2.2.2]oct-7-ene)s.

Recently we developed a transition metal-catalysed diyne cycloaddition copolymerisation¹ as a useful method of polymer synthesis, in which one molecule of a cycloaddition component such as carbon dioxide, an isocyanate, a nitrile or elemental sulfur reacts with two diyne molecules to afford a cycloaddition copolymer containing a heterocycle in its repeat unit.²

Here we report a new type of transition metal-catalysed diyne cycloaddition copolymerisation with an alkene to afford a cycloaddition copolymer containing a carbocycle in its repeat unit, *i.e.* a nickel(0)-catalysed diyne 1-N-substituted maleimide 2 double-cycloaddition copolymerisation to form a poly-

 $-\infty$ = 1,4-C₆H₄ (**a**), (CH₂)₈ (**b**), (CH₂)₆ (**c**) R = H (**d**), Et (**e**)

 $R' = Ph (f), C_8 H_{17} (g), Et (h)$

Scheme 1

(bicyclo[2.2.2]oct-7-ene) **3** having a wholly carbon backbone with an imide functionality (Scheme 1). This diyne-maleimide copolymerisation is characterised by a unique process in which two maleimide molecules connect two diyne molecules by double-cycloaddition to generate a copolymer repeat unit containing a bicyclo[2.2.2]oct-7-ene ring *via* nickel(0)-catalysed formation of a cyclohexadiene intermediate. Cycloaddition of two diyne molecules to one maleimide molecule is followed by Diels-Alder cycloaddition with the second maleimide molecule. This diyne-maleimide copolymerisation is based on our recent study of an efficient and chemoselective nickel(0)-catalysed 2:2 monoyne-maleimide double-cycloaddition to afford an *exo,exo*-bicyclo[2.2.2]oct-7-ene derivative stereoselectively (Scheme 2).³

The results of the copolymerisation of 1,4-diethynylbenzene **1ad** with *N*-octylmaleimide **2g** are summarised in Table 1. The reaction was carried out in a 50 ml stainless steel autoclave under nitrogen. When a mixture of **1ad** (0.25 mmol) and **2g** (0.5 mmol) in THF (5 ml) was heated at 90 °C for 20 h in the presence of a Ni(CO)₂(PPh₃)₂ catalyst (Ni:**1ad** = 0.1), poly(bicyclo[2.2.2]oct-7-ene) **3adg** with $M_n = 27200$ and

Scheme 2

Table 1Nickel(0)-catalysed double-cycloaddition copolymerisation of1,4-diethynylbenzene1ad1adwithN-octylmaleimide2gtoformpoly-(bicyclo[2.2.2]oct-7-ene)s3adg^a

				3adg		
Catalyst	Ni:1ad ^b	2g:1ad ^b	T/°C	Yield (%) ^c	$M_{n^{d}}$	$M_{\rm w}/M_{\rm n}^{d}$
Ni(CO) ₂ (PPh ₃) ₂	0.1	4	90	50	19800	1.9
Ni(CO) ₂ (PPh ₃) ₂	0.1	2	90	51	27200	2.1
Ni(CO) ₂ (PPh ₃) ₂	0.05	2	90	50	26800	3.5
Ni(CO) ₂ (PPh ₃) ₂	0.1	2	110	60	34600	1.9
Ni(CO) ₂ (PPh ₃) ₂	0.1	2	130	36	27100	2.6
Ni(cod) ₂ -2PPh ₃	0.1	2	90	50	16000	2.4
Ni(cod) ₂	0.1	2	90	91 ^e		

^{*a*} Conditions: **1ad** (0.25 mmol), THF (5 ml), 20 h, isolation of **3adg** using CH₂Cl₂–AcOEt. ^{*b*} Molar ratio. ^{*c*} Based on 100% conversion of **1ad** to **3adg**. ^{*d*} Determined by GPC with polystyrene standards in CHCl₃. ^{*e*} A CH₂Cl₂insoluble copolymer. $M_w/M_n = 2.1$ was obtained in 51% yield by concentration of the resulting reaction mixture under vacuum and by precipitation with CH₂Cl₂–AcOEt. Raising the reaction temperature to 110 °C increased the copolymer molecular weight to 34600. A nickel(0) catalyst generated from Ni(cod)₂ and 2 equiv. of PPh₃ was also effective, but Ni(cod)₂ alone gave an insoluble copolymer, probably due to copolymer branching and/or cross-linking^{2c} originating from formation of diyne trimer in the copolymer. Compound **3adg** was formed as a pale yellow powder, which was soluble in THF, CH₂Cl₂ and CHCl₃ but insoluble in AcOEt and diethyl ether. The thermal stability of **3adg** was examined by thermogravimetric analysis (TGA) in

Fig. 1 ¹³C NMR C=O and C=C signals of poly(bicyclo[2.2.2]oct-7-ene)s **3adg** and **3bdg** together with model compounds **4–6** (CDCl₃)

Table 2 Nickel(0)-catalysed double-cycloaddition copolymerisation of diynes 1 with maleimides 2 to form poly(bicyclo[2.2.2]oct-7-ene)s 3^{α}

3					
$M_{\rm w}/M_{\rm n}^{d}$					
1.3					
2.3					
1.8					
2.4					
1.6					
2.8					

^{*a*} Conditions: **1** (0.25 mmol), Ni(CO)₂(PPh₃)₂: **1** = 0.1, THF (2 ml), 20 h, isolation of **3** using CH₂Cl₂-hexane. ^{*b*} Molar ratio. ^{*c*} Based on 100% conversion of **1** to **3**. ^{*d*} Determined by GPC with polystyrene standards in CHCl₃. ^{*e*} Isolation from CH₂Cl₂-Et₂O.

air, and T_{10} (the temperature causing a 10% weight loss) was 322 °C.

Copolymerisations of **1ad** with *N*-phenyl- and *N*-ethylmaleimides **2f** and **2h** gave insoluble copolymers **3adf** and **3adh**. Thus introduction of a longer *N*-alkyl substituent, such as an octyl group, into the maleimide was necessary for the preparation of a soluble poly(bicyclo[2.2.2]oct-7-ene) from **1ad**.

Poly(bicyclo[2.2.2]oct-7-ene) **3adg** was identified by IR, ¹H and ¹³C NMR spectroscopy. Comparison of ¹³C NMR C=O and C=C signals of **3adg** and a model compound of the copolymer repeat unit was most informative. The ¹³C NMR C=O and C=C signals of **3adg** were similar to those of model compound **4**,³ obtained regio- and stereo-selectively by the nickel(0)-catalysed cycloaddition reaction of phenylacetylene with **2g** (Fig. 1). This result confirms that the structure of **3adg** contains an *exo,exo*-fused 1,8-phenylene-substituted bicyclo[2.2.2]oct-7-ene ring.

In contrast with the formation of insoluble copolymer **3adf**, dodeca-1,11-diyne **1bd** copolymerised with **2f** to afford soluble copolymer **3bdf**, the difference in solubility being due to the presence of the long alkylene chains (Table 2). Diyne **1bd** copolymerised with **2g** to afford **3bdg** as a colourless resinous solid. The ¹³C NMR C=O and C=C signals of **3bdg** were a superposition of those of two model compounds **5** and **6**,³ which were obtained stereo- but nonregio-selectively by nickel(0)-catalysed cycloaddition reaction of pent-1-yne with **2g** (Fig. 1). This fact demonstrates the copolymer structure and indicates that **3bdg** has two kinds of repeat units corresponding to **5** and **6**.

Use of a two-fold excess of the maleimide (maleimide:diyne = 4:1) did not influence significantly the copolymer yield and molecular weight when compared with the stoichiometric copolymerisation (maleimide:diyne = 2:1) (Tables 1 and 2). An internal diyne, tetradeca-3,11-diyne **1ce**, copolymerised with **2f** at 110 °C to afford **3cef**.

Poly(bicyclo[2.2.2]oct-7-ene)s **3adg** and **3bdg** containing two octyl groups per repeat unit have unique rigid and flexible fence-like structures, respectively, and are potentially interesting, as structurally related comb-like polymers are well known and attract considerable attention on account of their specific properties.⁴

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (Nos. 06227235 and 07216237) from the Ministry of Education, Science, Sports and Culture, Japan.

References

- T. Tsuda, *Gazz. Chim. Ital.*, 1995, **125**, 101; T. Tsuda, in *The Polymeric Materials Encyclopedia*, ed. J. C. Salamone, CRC, Boca Raton, 1996, vol. 3, p. 1905; vol. 5, p. 3525.
- 2 For the diyne-carbon dioxide cycloaddition copolymerisation to form a poly(2-pyrone), see: (a) T. Tsuda, H. Yasukawa, H. Hokazono and Y. Kitaike, Macromolecules, 1995, 28, 1312. For the diyne-carbon dioxide cycloaddition copolymerisation to form a poly(4-pyrone), see: (b) T. Tsuda, H. Hokazono and K. Toyota, J. Chem. Soc., Chem. Commun., 1995, 2417. For the diyne-isocyanate cycloaddition copolymerisation to form a poly(2-pyridone), see: (c) T. Tsuda and A. Tobisawa, Macromolecules, 1995, 28, 1360. For the diyne-nitrile cycloaddition copolymerisation to form a poly(pyridine), see: (d) T. Tsuda and H. Maehara, Macromolecules, 1996, 29, 4544. For the diyne-elemental sulfur cycloaddition copolymerisation to form a poly-(thiophene), see: (e) T. Tsuda and A. Takeda, Chem. Commun., 1996, 1317. For the diyne-diene-carbon monoxide cycloaddition terpolymerisation to form a poly(enone), see: (f) T. Tsuda and F. Tsugawa, Chem. Commun., 1996, 907. For the related monoyne-dimaleimide doublecycloaddition copolymerisation to form a poly(imide), see: (g) T. Tsuda, M. Shimada and H. Mizuno, Chem. Commun., 1996, 2371.
- 3 T. Tsuda and H. Mizuno, The 69th Annual Meeting of The Chemical Society of Japan, Kyoto, 1995, 2H435.
- 4 For examples: N. A. Plate and V. P. Shibaev, J. Polym. Sci., Macromol. Rev., 1974, 8, 117; Y. Yuki, H. Kunisada and Y. Miyake, Polym. J., 1991, 23, 939.

Received, 24th September 1996; Com. 6/06563E

202 Chem. Commun., 1997