Reactions of C_{2v} **-symmetrical** C_{60} **pentakis-adducts with diazomethane: regioselective formation of hexakis- to octakis-adducts and mechanism of methanofullerene formation by addition of diazomethane followed by dinitrogen extrusion**

Richard F. Haldimann,*a* **Frank-Gerrit Kl¨arner***b* **and François Diederich****a*

a Laboratorium f¨ur Organische Chemie, ETH-Zentrum, Universit¨atstrasse 16, CH-8092 Z¨urich, Switzerland b Institut für Organische Chemie, Universität-GH Essen, Universitätstrasse 5, D-45141 Essen, Germany

Repeated treatment of the C_{2v} -symmetrical C_{60} pentakis**adducts 1a,b with diazomethane provided with high regioselectively the novel heptakis- 5 and octakis-adducts 4a,b** *via* **hexakis-adducts 3a,b; an orbital symmetry-controlled reaction mechanism for the thermal dinitrogen extrusion from the pyrazoline intermediates in the addition of diazomethane to fullerenes is proposed.**

The 1,3-dipolar cycloaddition of diazomethane to C_{60} or C_{70} occurs at 6-6-bonds (bonds at the junction between two 6-membered rings) under formation of isolable pyrazoline derivatives.^{1,2} Photolysis of these intermediates under N₂extrusion provides an isomeric mixture of methanofullerenes, namely 6-6-closed ones, in which the 6-6-bond is bridged in a cyclopropane-type fashion, and 6-5-open ones, in which the methano group bridges the open junction between a 6- and 5-membered ring,² similar to the bonding in 1,6-methano-[10]annulene.3 In contrast, thermolysis of the pyrazolines proceeds with high regioselectivity and yields 6-5-open adducts almost exclusively.1,2*a,c* As part of our research on higher adducts of C_{60} ⁴ we became interested in exploring whether diazomethane would still add to highly functionalised carbon spheres of considerably reduced electrophilicity^{4c} and dienophile character and whether the product distribution obtained by N_2 -extrusion from the intermediate pyrazolines would be similar to that observed for the parent fullerenes. The C_{2v} symmetrical pentakis-adducts **1a** and **1b**4*b* (Scheme 1) were chosen as starting materials in these investigations since their reactivity is limited to a single 6-6-bond in pseudo-octahedral position.5 Addition to this bond is particularly favourable since it generates a residual fullerene π -chromophore consisting of eight stable benzenoid ring sub-structures.6 Here, we report the stepwise addition of diazomethane to **1a**,**b** under formation of novel hexakis- to octakis-adducts of C_{60} and propose a mechanism for the $N₂$ -extrusion from the intermediate pyrazolines to give methanofullerenes.

Reaction of $1a$, b with CH₂N₂ (*ca.* 60-fold excess) in CHCl₃ at 0 °C afforded the corresponding yellow, *C*s-symmetrical pyrazolines **2a**,**b** in high yields (Scheme 1).† Upon heating to reflux in CCl₄, N₂-extrusion led to the orange-coloured, C_1 symmetrical 6-5-open methanofullerenes **3a**,**b** in nearly quantitative yield. Treatment of $3a$, b with CH_2N_2 (*ca.* 40-fold excess) in CHCl₃ at 0 °C gave within 15 min the yellow–orange, C_1 symmetrical octakis-adducts **4a**,**b** in an astonishing 90% yield. A further reaction of **4a**,**b** with additional diazomethane was not observed. When $3b$ was reacted with CH_2N_2 (*ca.* 20-fold excess) for 10 min in CH₂Cl₂ at -80 to -60 °C, followed by quenching of the excess reagent with AcOH at -60 °C and workup at room temperature, heptakis-adduct **5** was directly obtained. Neither in the formation of **4a**,**b** nor in the preparation of **5** were pyrazoline intermediates observed. When pyrazoline **2a** was photolysed, the C_{2v} -symmetrical hexakis-adduct 6 and the *C*1-symmetrical regioisomer **3a** were obtained in *ca*. 1 : 1

ratio and a combined yield of 15%. The isomeric mixture could not be separated by column chromatography. Therefore, **6** was purified by adding CH_2N_2 at 0 °C to the mixture in CH_2Cl_2 which transformed **3a** into octakis-adduct **4a** while leaving **6** unchanged. Chromatographic purification $(SiO₂, CH₂Cl₂)$ was subsequently feasible, yielding **6** as a bright yellow solid. Thus, the reaction of diazomethane with pentakis-adducts **1a** ultimately yielded similar products to those observed in the addition to C_{60} : diazomethane added to the 6-6-bond and

Scheme 1 *Reagents and conditions*: i, CH₂N₂ (*ca.* 60 equiv.), CHCl₃, 0 °C, 1.5 h; 71% (**2a**), 93% (**2b**); ii, CCl4, reflux, 15 min; 93% (**3a**, **b**); iii, *h*n (Hg medium pressure lamp, 250 W), C_6D_6 , $c = 9.6$ mmol dm⁻³, $T = 5{\text -}10^{\circ}C$, 8 min, 15% (6 and 5a in *ca*. 1 : 1 ratio); iv, excess CH₂N₂ (*ca*. 40 equiv.), CHCl₃, 0 °C, 15 min; 90% (4a, b); v, CH₂N₂ (*ca.* 20 equiv.), CH₂Cl₂, -80 to -60 °C, 10 min, then excess HOAc, -60 °C, and workup at 20 °C; 79% (**3**)

*Chem. Commun***., 1997 237**

photolysis of **2a** gave a mixture of 6-6-closed **6** and 6-5-open **3a** methanofullerenes, whereas thermolysis exclusively provided the 6-5-open derivative **3a**. None of the isomeric 6-6-closed methanofullerene **6** was detected in the 1H NMR spectrum of the crude thermolysis product.

According to semiempirical PM3 calculations,^{4*a*,7} the 6-6-closed methanofullerene 6 is 2.1 kcal mol⁻¹ (1 cal = 4.184) J) more stable than the 6-5-open isomer **3a**. The preferred formation of the thermodynamically less stable product suggested that thermolysis proceeded under kinetic control, and one of us (F. G. K.) recognised the close analogy of the N_2 elimination of diazomethane–fullerene adducts to 6-5-open methanofullerenes to the previously reported N_2 -elimination from diazoalkane–toluene adducts (Scheme 2).8 Starting from **7**, thermolysis provides in an orbital symmetry controlled π^2 s + π^2 s + σ^2 s + σ^2 a] rearrangement with high regioselectivity

Scheme 2 Proposed mechanism for the thermal and photochemical N_2 extrusion from diazoalkane adducts of toluene

Scheme 3 Proposed mechanism for the thermal and photochemical N_2 extrusion from diazalkane adducts of fullerenes (shown only in part)

cycloheptatriene **8**, resulting from ring-opening of the intermediate norcaradiene. In contrast, photolysis of **7** presumably proceeds *via* a diradical mechanism, leading to a mixture of **8** and isomeric **9**. We propose a similar mechanism (Scheme 3) to explain the product distribution obtained during thermolysis and photolysis of diazomethane–fullerene adducts. Even the surprising formation of **5** and **4a**,**b** can be rationalized by this mechanism. A 1,3-dipolar cycloaddition of diazomethane to **3a,b** or **5** is followed by rapid, regioselective, concerted N_2 elimination and valence bond isomerisation. It might also be responsible for the analogous preference of azide adducts of C_{60} to thermally form 6-5-open azafullerenes.⁹

Support from the Swiss National Science Foundation is gratefully acknowledged.

Footnote

† All compounds were fully characterised by 1H and 13C NMR (CDCl3), IR, UV–VIS, and FABMS (3-nitrobenzyl alcohol). *Selected data* for **2a**: IR (CHCl₃): 1569 cm⁻¹ (N=N); ¹H NMR: δ 5.73 (s, pyrazoline CH₂); ¹³C NMR: 23 of the 24 expected resonances expected for the fullerene sp²-Catoms; FABMS: m/z 1522.6 (22, M⁺), 1492.5 (100 [M - N₂]⁺). For **3a**: ¹H NMR: δ 4.71 and 2.13 ($2 \times d$, *J* 9.9 Hz, methano CH₂); ¹³C NMR: 44 of the 50 resonances expected for fullerene sp2-C-atoms; FABMS: *m/z* 1493.7 (100, M⁺). For $6:$ ¹H NMR: δ 2.57 (s, methano CH₂); ¹³C NMR: all 12 resonances expected for fullerene sp2-C-atoms; FABMS: *m/z* 1493.7 (100, M+). For **5**: 1H NMR: d 4.48 (d, *J* 10.9, 2 H, methano CH), 2.75 (d, *J* 10.9, 2 H, methano CH); 13C NMR: all 26 resonances expected for fullerene sp2- C-atoms; FABMS: *m*/*z* 1739.1 (M+). For **4b**: 1H NMR: d 4.53 (d, *J* 15.6, 1 H), 4.46 (d, *J* 15.2, 1 H), 4.10 (d, *J* 10.2, 1 H), 3.49 (d, *J* 15.6, 1 H), 3.38 (d, *J* 15.2, 1 H), 2.02 (d, *J* 10.2, 1 H) all methano CH; 13C NMR: 48 of the 50 resonances expected for the fullerene sp2-C-atoms; FABMS: *m/z* 1753.3 (M+, 100).

References

- 1 T. Suzuki, Q. Li, K. C. Khemani and F. Wudl, *J. Am. Chem. Soc.*, 1992, **114**, 7301.
- 2 (*a*) A. B. Smith, III, R. M. Strongin, L. Brard, G. T. Furst, W. J. Romanow, K. G. Owens and R. C. King, *J. Am. Chem. Soc.*, 1993, **115**, 5829; (*b*) A. B. Smith, III, R. M. Strongin, L. Brard, G. T. Furst, W. J. Romanow, K. G. Owens and R. J. Goldschmidt, *J. Chem. Soc., Chem. Commun.*, 1994, 2187; (*c*) A. B. Smith, III, R. M. Strongin, L. Brard, G. T. Furst, W.J. Romanow, K. G. Owens, R. J. Goldschmidt and R. C. King, *J. Am. Chem. Soc.*, 1995, **117**, 5492.
- 3 E. Vogel, *Pure Appl. Chem.*, 1993, **65**, 143.
- 4 (*a*) L. Isaacs, R. F. Haldimann and F. Diederich, *Angew. Chem., Int. Ed. Engl.*, 1994, **33**, 2339; (*b*) L. Isaacs, P. Seiler and F. Diederich, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1466; F. Cardullo, L. Isaacs, F. Diederich, J.-P. Gisselbrecht, C. Boudon and M. Gross, *Chem. Commun.*, 1996, 797; (*c*) C. Boudon, J.-P. Gisselbrecht, M. Gross, L. Isaacs, H. L. Anderson, R. Faust and F. Diederich, *Helv. Chim. Acta*, 1995, **78**, 1334.
- 5 I. Lamparth, A. Herzog and A. Hirsch, *Tetrahedron*, 1996, **52**, 5065.
- 6 P. Seiler, L. Isaacs and F. Diederich, *Helv. Chim. Acta*, 1996, **79**, 1047; I. Lamparth, C. Maichle-M¨ossmer and A. Hirsch, *Angew. Chem., Int. Ed. Engl.*, 1995, 34, 1607; B. Kräutler, T. Müller, J. Maynollo, K. Gruber, C. Kratky, P. Ochsenbein and D. Schwarzenbach, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 1203; P. J. Fagan, J. C. Calabrese and B. Malone, *J. Am. Chem. Soc.*, 1991, **113**, 9408.
- 7 J. P. Stewart, *J. Comput. Chem.*, 1989, **10**, 209; F. Diederich, L. Isaacs and D. Philp, *J. Chem. Soc., Perkin Trans. 2*, 1994, 391.
- 8 F.-G. Kl¨arner, V. Glock and J.-L. Hemmes, *Chem. Ber.*, 1990, **123**, 1869; F.-G. Klärner, R. Band, V. Glock and W. A. König, *Chem. Ber.*, 1992, **125**, 197.
- 9 M. Prato, Q. Chan Li, F. Wudl and V. Lucchini, *J. Am. Chem. Soc.*, 1993, **115**, 1148; A. B. Smith, III and H. Tokuyama, *Tetrahedron*, 1996, **52**, 5257; G. Schick, T. Grösser and A. Hirsch, *J. Chem. Soc., Chem.* Commun., 1995, 2289; T. Grösser, M. Prato, V. Lucchini, A. Hirsch and F. Wudl, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1343.
- 10 A. Hirsch, *Tetrahedron*, 1996, **52**, 5065.

Received, 4th November 1996; Com. 6/07483I