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Repeated treatment of the C,,-symmetrical Cg pentakis-
adducts lab with diazomethane provided with high re-
gioselectively the novel heptakis- 5 and octakis-adducts 4a,b
via hexakis-adducts 3a,b; an orbital symmetry-controlled
reaction mechanism for the thermal dinitrogen extrusion
from the pyrazoline intermediates in the addition of
diazomethane to fullerenes is proposed.

The 1,3-dipolar cycloaddition of diazomethane to Cgp Or Crg
occurs at 6-6-bonds (bonds at the junction between two
6-membered rings) under formation of isolable pyrazoline
derivatives.12 Photolysis of these intermediates under No-
extrusion provides an isomeric mixture of methanofullerenes,
namely 6-6-closed ones, in which the 6-6-bond is bridged in a
cyclopropane-type fashion, and 6-5-open ones, in which the
methano group bridges the open junction between a 6- and
5-membered ring,2 similar to the bonding in 1,6-methano-
[10]annulene3 In contrast, thermolysis of the pyrazolines
proceeds with high regiosel ectivity and yiel ds 6-5-open adducts
amost exclusively.12ac As part of our research on higher
adducts of Ceo,* we became interested in exploring whether
diazomethane would till add to highly functionalised carbon
spheres of considerably reduced electrophilicity4c and dieno-
phile character and whether the product distribution obtained by
No-extrusion from the intermediate pyrazolines would be
similar to that observed for the parent fullerenes. The C,,-
symmetrical pentakis-adducts 1a and 1b4 (Scheme 1) were
chosen as starting materials in these investigations since their
reactivity is limited to a single 6-6-bond in pseudo-octahedral
position.> Addition to this bond is particularly favourable since
it generates a residual fullerene s-chromophore consisting of
eight stable benzenoid ring sub-structures.6 Here, we report the
stepwise addition of diazomethane to 1a,b under formation of
novel hexakis- to octakis-adducts of Cg and propose a
mechanism for the N,-extrusion from the intermediate pyrazo-
lines to give methanofullerenes.

Reaction of 1a,b with CH.N, (ca. 60-fold excess) in CHCl3
at 0 °C afforded the corresponding yellow, Cs-symmetrical
pyrazolines 2a,b in high yields (Scheme 1).1 Upon heating to
reflux in CCl,, Np-extrusion led to the orange-coloured, Ci-
symmetrical 6-5-open methanofullerenes 3a,b in nearly quanti-
tativeyield. Treatment of 3a,b with CH,N, (ca. 40-fold excess)
in CHCI3 at 0 °C gave within 15 min the yellow—orange, C;-
symmetrical octakis-adducts 4a,b in an astonishing 90% yield.
A further reaction of 4a,b with additional diazomethane was not
observed. When 3b was reacted with CH,N, (ca. 20-fold
excess) for 10 min in CH,Cl, at —80 to —60 °C, followed by
quenching of the excess reagent with AcOH at —60 °C and
workup at room temperature, heptakis-adduct 5 was directly
obtained. Neither in the formation of 4a,b nor in the preparation
of 5 were pyrazoline intermediates observed. When pyrazoline
2a was photolysed, the C,,-symmetrical hexakis-adduct 6 and
the C;-symmetrical regioisomer 3a were obtained inca. 1:1

ratio and a combined yield of 15%. The isomeric mixture could
not be separated by column chromatography. Therefore, 6 was
purified by adding CH,N, at 0 °C to the mixture in CH,Cl,
which transformed 3a into octakis-adduct 4a while leaving 6
unchanged. Chromatographic purification (SiO,, CH,Cl,) was
subsequently feasible, yielding 6 asabright yellow solid. Thus,
the reaction of diazomethane with pentakis-adducts la ulti-
mately yielded similar products to those observed in the
addition to Cgo: diazomethane added to the 6-6-bond and

5 X = C(CO,CH,CO,EY), 4ab

a X = C(CO,Et),
b X = C(CO,CH,CO,Et),

Scheme 1 Reagents and conditions: i, CH,N (ca. 60 equiv.), CHCI3, 0 °C,
1.5h; 71% (2a), 93% (2b); ii, CCly, reflux, 15 min; 93% (3a, b); iii, hv (Hg
medium pressure lamp, 250 W), CgDg, ¢ = 9.6 mmol dm—3, T = 5-10 °C,
8 min, 15% (6 and 5a in ca. 1:1 ratio); iv, excess CH,N, (ca. 40 equiv.),
CHCl3, 0°C, 15 min; 90% (4a, b); v, CH,N, (ca. 20 equiv.), CHxCl,, —80
to —60 °C, 10 min, then excess HOAc, —60 °C, and workup at 20 °C; 79%
(©)
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photolysis of 2a gave amixture of 6-6-closed 6 and 6-5-open 3a
methanofullerenes, whereas thermolysis exclusively provided
the 6-5-open derivative 3a. None of the isomeric 6-6-closed
methanofullerene 6 was detected in the 1H NMR spectrum of
the crude thermolysis product.

According to semiempirical PM3 calculations,4a7 the
6-6-closed methanofullerene 6is2.1 kcal mol—1 (1 ca = 4.184
J) more stable than the 6-5-open isomer 3a. The preferred
formation of the thermodynamically less stable product sug-
gested that thermolysis proceeded under kinetic control, and
one of us (F. G. K.) recognised the close analogy of the N»-
elimination of diazomethane—fullerene adducts to 6-5-open
methanofullerenes to the previously reported N-elimination
from diazoalkane-toluene adducts (Scheme 2).8 Starting from
7, thermolysis provides in an orbital symmetry controlled [rt2s
+ n2s + 02s + 023 rearrangement with high regioselectivity
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Scheme 2 Proposed mechanism for the thermal and photochemical No-
extrusion from diazoalkane adducts of toluene

VY VAR

VA A VA 2
0 e

o
~NS 7 ¥”\,f
v, =N, ff\,
SN
f“/
NP

Scheme 3 Proposed mechanism for the thermal and photochemical No-
extrusion from diazalkane adducts of fullerenes (shown only in part)
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cycloheptatriene 8, resulting from ring-opening of the inter-
mediate norcaradiene. In contrast, photolysis of 7 presumably
proceeds via a diradica mechanism, leading to a mixture of 8
and isomeric 9. We propose asimilar mechanism (Scheme 3) to
explain the product distribution obtained during thermolysis
and photolysis of diazomethane—fullerene adducts. Even the
surprising formation of 5 and 4a,b can be rationalized by this
mechanism. A 1,3-dipolar cycloaddition of diazomethane to
3a,b or 5 is followed by rapid, regioselective, concerted N,-
elimination and valence bond isomerisation. It might also be
responsiblefor the anal ogous preference of azide adducts of Cgo
to thermally form 6-5-open azafullerenes.®
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Footnote

T All compoundswerefully characterised by 1H and 23C NMR (CDCly), IR,
UV-VIS, and FABMS (3-nitrobenzyl alcohol). Selected data for 2a: IR
(CHCl3): 1569 cm—1 (N=N); IH NMR: 6 5.73 (s, pyrazoline CH,); 13C
NMR: 23 of the 24 expected resonances expected for the fullerene sp2-C-
atoms; FABMS: m/z1522.6 (22, M+), 1492.5 (100 [M — N]*). For 3a: 1H
NMR: 8 4.71and 2.13 (2 X d, J 9.9 Hz, methano CHy); 13C NMR: 44 of the
50 resonances expected for fullerene sp2-C-atoms; FABMS: m/z 1493.7
(200, M+). For 6: 1H NMR: & 2.57 (s, methano CH,); 13C NMR: all 12
resonances expected for fullerene sp2-C-atoms; FABMS: m/z 1493.7 (100,
M+). For 5: 1H NMR:  4.48 (d, J 10.9, 2 H, methano CH), 2.75 (d, J 10.9,
2 H, methano CH); 13C NMR: all 26 resonances expected for fullerene sp2-
C-atoms; FABMS: m/z 1739.1 (M+). For 4b: *H NMR: 6 453 (d, J15.6, 1
H), 4.46 (d, J15.2, 1 H), 4.10 (d, J 10.2, 1 H), 3.49 (d, J 15.6, 1 H), 3.38 (d,
J15.2, 1 H), 2.02 (d, J 10.2, 1 H) al methano CH; 13C NMR: 48 of the 50
resonances expected for the fullerene sp?-C-atoms; FABMS: m/z 1753.3
(M+, 100).
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