Silvio Aime,*† Walter Dastrù, Roberto Gobetto, Luciano Milone and Alessandra Viale

Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, V. Pietro Giuria 7, 10125 Torino, Italy

Alkynes react at low temperature with $[Ru_3H(\mu-H)(CO)_{11}]$ to afford the novel $[Ru_3(CO)_{11}(alkyne)]$ complexes, which correspond to the first stage of the coordination of alkynes to metal clusters and are the precursors of the previously reported $[Ru_3(CO)_9(\mu-CO)(\mu_3-\eta^2-alkyne)]$ derivatives.

Although the reactions between alkynes and trimetallic carbonyl clusters $[M_3(CO)_{12}]$ (M = Fe, Ru, Os) have been under intense scrutiny in the last two to three decades and a large number of derivatives have been characterized,¹ no report has yet appeared on derivatives corresponding to the first step of alkyne coordination, *i.e.* to $[M_3(CO)_{11}(alkyne)]$ species containing an alkyne ligand coordinated in a η^2 -mode to a single metallic centre. It is reasonable to think that the lack of observation of these compounds is an indication of their instability and their prompt transformation to $[M_3(CO)_x(alkyne)]$ derivatives:^{2,3} [eqn. (1); M = Fe, x = 9; M = Ru, Os, x = 10].

$$[M_{3}(CO)_{12}] + alkyne \xrightarrow{-CO} [M_{3}(CO)_{11}(alkyne)] \xrightarrow{-CO} [M_{3}(CO)_{x}(alkyne)]$$
(1)

Thus the thermally activated dissociation of CO ligands from $[M_3(CO)_{12}]$ occurs at temperatures which appear to be too high to allow the observation of detectable amounts of $[M_3(CO)_{11}(alkyne)]$ derivatives.

A way to overcome this problem lies in the possibility of forming the coordinatively unsaturated ' $Ru_3(CO)_{11}$ ' species at low temperature and then to allow its reaction *in situ* with the alkyne ligand.

Some years ago, Keister and coworkers⁴ reported that $[Ru_3H(\mu-H)(CO)_{11}]$, in the presence of carbon monoxide, decomposes cleanly to $[Ru_3(CO)_{12}]$ (97% isolated yield). They also showed that the kinetics of this conversion are first order in $[Ru_3H(\mu-H)(CO)_{11}]$ and independent of CO concentration. The proposed mechanism consists of the reductive elimination of H₂ (through a three-centre transition state) leading to the formation of the coordinatively unsaturated 'Ru₃(CO)₁₁' intermediate.

On the basis of this background information, we thought that $[Ru_3H(\mu-H)(CO)_{11}]$ may represent an interesting 'lightly stabilized' derivative⁵ for carrying out substitution reactions at low temperature.

The reaction between $[Ru_3H(\mu-H)(CO)_{11}]$ and acetylene was carried out directly in the NMR tube, in CD₂Cl₂ at 183 K. After few minutes the ¹H NMR spectrum of the reaction mixture shows two doublets at δ 8.45 and 5.97 (³J_{HH} 8.6 Hz) assigned to $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]$, and two singlets at δ 5.42 and 1.80 assigned to free C₂H₄‡ and C₂H₂ respectively. The ¹³C NMR spectrum at 183 K of the reaction mixture obtained by using a ¹³CO-enriched sample of $[Ru_3H(\mu-H)(CO)_{11}]$ is shown in Fig. 1. In the spectrum there are eleven carbonyl resonances of equal intensity at δ 215.0, 196.1, 194.9, 193.8, 193.1, 191.1, 190.1, 189.0, 188.4, 187.8 and 185.9.

As we approach ambient temperature, we observe that the transformation of $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]$ to $[Ru_3(CO)_9(\mu-CO)(\mu_3-\eta^2-C_2H_2)]$ takes place as clearly assessed from both ¹H and ¹³C NMR spectroscopy.³ The observation of distinct ¹H and ¹³C resonances for all the ligands present in $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]$ is indicative of a 'frozen' asymmetric structure in which

the acetylene occupies an axial coordination site. The observation of a carbonyl resonance significantly downfield shifted (δ 215.0) is reminiscent of a semi-bridging ligand which 'disperses' excess of charge to a neighbouring metallic centre. This may be an indication of the occurrence of some interaction of the acetylene ligand with a second ruthenium centre as shown in Fig. 2. The source of molecular asymmetry would then arise from a partial alignment of the alkyne ligand along one of the metal-metal bonds and this arrangement anticipates to some extent the coordination geometry found in $[Ru_3(CO)_9(\mu CO)(\mu_3-\eta^2-alkyne)].^3$

An estimation of the distance between the two hydrogens in the alkyne moiety was obtained by measuring the ¹H NMR relaxation times at 213 K. Both hydrogens show the same T_1 value of 1.6 s. On the assumption that the relaxation pathway is largely dominated by the dipolar contribution, the $r_{\rm HH}$ distance can be determined by eqn. (2):⁶

$$\frac{1}{T_1} = \frac{3}{2} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\gamma_{\rm H}^4 \hbar^2 \tau_{\rm c}}{r^6}$$
(2)

where μ_0 is the magnetic susceptibility in a vacuum, γ_H is the gyromagnetic value for a proton and τ_c is the molecular reorientational time of the complex. Since $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]$ and $[Ru_3(CO)_{12}]$ have very similar molecular sizes, we used a value of 172 ps for τ_c at 213 K as evaluated from a recent NMR relaxation study of $[Ru_3(CO)_{12}]$.⁷ The obtained r_{HH} distance is 2.48 Å. On the basis of a carbon–carbon distance of

Fig. 1 $^{13}C\{^{1}H\}$ NMR spectrum of a ^{13}CO enriched sample of $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]\{CD_2Cl_2,\,183~K;\,^*~is~assigned~to~[Ru_3(CO)_{12}]\}$

Fig. 2 Proposed structure for $[Ru_3(CO)_{11}(\eta^2-C_2H_2)]$

Chem. Commun., 1997 267

1.27 Å (as found for mononuclear systems containing an η^2 -bonded acetylene molecule⁸) and a carbon–hydrogen distance of 1.1 Å an average value of 123.5° for the H–C–C angle was obtained.

Analogous results were obtained when $[Ru_3H(\mu-H)(CO)_{11}]$ was reacted with substituted acetylenes. In the case of phenylacetylene only one of the two possible isomers of $[Ru_3(CO)_{11}(\eta^2-HC_2Ph)]$ was detected as clearly established by the single resonance for the acetylenic proton observed at δ 6.18 in the NMR spectrum.

In summary the results herein reported show that $[Ru_3H(\mu-H)(CO)_{11}]$ may represent a useful starting material for the synthesis of $[Ru_3(CO)_{11}L]$ derivatives where L may be an alkyne as well as a number of other two-electron donor ligands. This novel synthetic route to $[Ru_3(CO)_{11}L]$ species may also provide useful insights into the further development of the cluster–surface analogy,⁹ since the first stages of the chemisorption processes are probably represented by the interaction of Lewis-base substrates at single metallic centres followed by the eventual set-up of multicentre bonding schemes.

We thank Ministero dell' Università e della Ricerca Scientifica e Tecnologica (MURST) and the Consiglio Nazionale delle Ricerche (Comitato 03) for financial support.

Footnotes

† E-mail: aime@ch.unito.it

[‡] The detection of C₂H₄ seems to imply that the reactivity of [Ru₃H(μ -H)(CO)₁₁] could not be limited to the loss of H₂ to give 'Ru₃(CO)₁₁'. Another mechanism involving intermediates like [Ru₃H₂(C₂H₂)(CO)₁₁] and [Ru₃H(CHCH₂)(CO)₁₁] which react with C₂H₂ to yield [Ru₃(CO)₁₁(η^2 -C₂H₂)] and C₂H₄ may occur. However, it has been observed that [Ru₃(CO)₁₁(η^2 -C₂H₂)] is also formed in the reaction between [Ru₃-(CO)₁₁(η^2 -C₂H₂)] is also formed in the reaction between [Ru₃-(CO)₁₁(η CMe)] and C₂H₂ at room temperature {even if it can be detected only in small amounts as it rapidly transforms to [Ru₃(CO)₉(μ -CO)(μ ₃- $\eta^2\text{-}C_2H_2)]\}.^{10}$ As MeCN is known to be a good leaving group, this observation supports the view that $[Ru_3(CO)_{11}(\eta^2\text{-}C_2H_2)]$ may be formed via the intermediate 'Ru_3(CO)_{11}' species.

References

- E. Sappa, J. Cluster Sci., 1994, 5, 211; A. J. Deeming, Adv. Organomet. Chem., 1986, 26, 1; A. J. Deeming, S. H. Hasso and M. Underhill, J. Chem. Soc., Dalton Trans., 1975, 1614; B. F. G. Johnson, J. Lewis, B. E. Reicherd, K. T. Schropp and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1977, 1417; B. F. G. Johnson, R. Khattar, J. Lewis and P. R. Raithby, J. Organomet. Chem., 1987, 335, C17; C. G. Pierpont, Inorg. Chem., 1977, 16, 636.
- 2 J. F. Blount, L. F. Dahl, C. Hoogzand and W. Hübel, J. Am. Chem. Soc., 1966, 88, 292.
- 3 S. Aime, R. Gobetto, L. Milone, D. Osella, L. Violano, A. J. Arce and Y. De Sanctis, *Organometallics*, 1991, **10**, 2854; S. Rivomanana, G. Lavigne, N. Lugan and J. J. Bonnet, *Organometallics*, 1991, **10**, 2285.
- 4 L. R. Nevinger, J. B. Keister and J. Maher, *Organometallics*, 1990, 9, 1900.
- 5 A. D. Adams and J. P. Selegue, in *Comprehensive Organometallic Chemistry*, Pergamon, Oxford, 1982, p. 1025; B. F. G. Johnson, J. Lewis and D. A. Pippard, *J. Chem. Soc., Dalton Trans.*, 1989, 407; M. Tachikawa and J. R. Shapley, *J. Organomet. Chem.*, 1977, **124**, C19.
- 6 R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Pitman, London, 1983.
- 7 S. Aime, W. Dastrù, R. Gobetto, J. Krause and L. Milone, Organometallics, 1995, 14, 4435.
- 8 G. R. Davies, W. Hewertson, R. H. B. Mais, P. G. Owston and C. G. Patel, *J. Chem. Soc. A*, 1970, 1873.
- 9 R. Ugo, *Catal. Rev.*, 1975, **11**, 225; E. L. Mutterties, T. N. Rhoding, E. Band, C. F. Brucker and W. R. Pretzer, *Chem. Rev.*, 1979, **79**, 91.
 10 S. Aime *et al.*, to be published.
- · ···· ·····

Received, 14th October 1996; Com. 6/06984C