Optical control over Pb²⁺ binding to a crown ether-containing chromene

Mark T. Stauffer, David B. Knowles, Carrie Brennan, Lance Funderburk, Fu-Tyan Lin and Stephen G. Weber*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA

Naphthochromene 1 binds Pb²⁺ in the dark, and the complex is photodissociated by a novel mechanism.

Metal-ion chelation by crown ethers has been the subject of intense investigation by researchers¹ for over thirty years. Functionalization of crown ethers² leads to pH, redox, and photochemical control over metal-ion binding. Several reports of metal-ion chelation by crown ether groups coupled to photochromic azobenzenes,² spiropyrans,³ and spirooxazines⁴ have appeared in the literature. Binding strategies described include the 'butterfly'2 configuration (i.e. a crown ether attached to each end of azobenzene) and use of ionic 'caps'.2-4 We present here a crown ether-containing chromene that binds Pb²⁺ in the dark, with dissociation of Pb²⁺ upon irradiation with near-UV light. The process is photoreversible. We monitor Pb2+ binding by observing the changes in the cathodic reduction of Pb²⁺. To our knowledge, there are no published accounts of metal-ion binding using photochromic chromenes. In metalbinding azobenzenes,² spiropyrans,³ and spirooxazines,⁴ the binding affinity is controlled by light through its influence on the chelator's geometry and/or the large increase in donor strength of the pyran oxygen following cleavage of the spiro carbon-oxygen bond. In contrast, compound 1 functions by taking advantage of the decrease in electron donor strength on ligating heteroatoms that can also stabilize, by electron donation, the positive charge created following photolysis.

Compound **1** was synthesized from 1-phenyl-1-(3,4-benzo-1,4,7,10,13-pentaoxacyclopentadeca-3-ene)prop-2-yn-1-ol and β -naphthol under acidic conditions, and purified by recrystallization (mp 83 °C). Perchlorate salts, benzo-15-crown-5, and methanol (MeOH) were used as received. Simultaneous photochemistry and square-wave voltammetry of solutions of Pb²⁺ and **1** [MeOH–H₂O (9:1)–5.0 × 10⁻² mol dm⁻³ LiClO₄] were carried out at amalgamated Au in a 1 mm quartz cuvette. Square-wave voltammetry of solutions of Pb²⁺ and benzo-15-crown-5 was performed at amalgamated Au in a conventional three-electrode electrochemical cell, in the same medium used for the photoelectrochemistry.

We used the model compound benzo-15-crown-5 to study the effect of Pb^{2+} binding by a crown ether upon the voltammetry of Pb^{2+} (Fig. 1). In the absence of benzo-15-crown-5, we observed reduction of free Pb^{2+} (-346 mV *vs.* Ag/AgCl). Increasing the concentration of benzo-15-crown-5 in solution caused the Pb^{2+} reduction peak to shift and decrease in intensity, indicative of

binding of Pb²⁺ by benzo- 15-crown-5. We carried out competitive binding between Pb²⁺ and Na⁺, in the presence of an excess of Na⁺, to confirm that the decrease in the Pb²⁺ reduction wave upon addition of benzo-15-crown-5 was due to binding of Pb²⁺ by the crown ether. Addition of 7.0×10^{-2} mol dm⁻³ NaClO₄ to a solution containing 1.83×10^{-5} mol dm⁻³ Pb²⁺ and 1.0×10^{-2} mol dm⁻³ benzo-15-crown-5 yielded the reduction wave (*ca.* -420 mV, *vs.* Ag/AgCl) for free Pb²⁺ during voltammetry of this solution. Thus, the change in the voltammetry of Pb²⁺ observed in Fig. 1 was due to binding by the crown ether.

Compound 1 ($\lambda_{max} = 284, 302, 346, 358$ nm) yields a visible band ($\lambda_{max} = 476$ nm) during irradiation with 300–400 nm light. Photoswitching of 1 in the presence of Pb²⁺ (Fig. 2) reveals that 1 is fairly photostable. Voltammetry of 1 in the dark

Fig. 1 Cathodic reduction of 4.0×10^{-5} mol dm⁻³ Pb²⁺ in MeOH–H₂O (9:1) containing 0.1 mol dm⁻³ LiClO₄ in the absence and presence of excess benzo-15-crown-5. (—) 4.0×10^{-5} mol dm⁻³ Pb²⁺; (---) 9.6×10^{-3} mol dm⁻³ benzo-15-crown-5 added; (000) 3.3×10^{-2} mol dm⁻³ benzo-15-crown-5 added.

Fig. 2 Photoswitching of 4.93×10^{-4} mol dm⁻³ **1** in the presence of 5.39×10^{-3} mol dm⁻³ Pb²⁺, in MeOH–H₂O (9:1) containing 5×10^{-2} mol dm⁻³ LiClO₄. Each cycle consists of 30 s irradiation with 300–400 nm light, followed by 30 s irradiation with > 420 nm light.

Chem. Commun., 1997 287

or during illumination yields no waves in the -300 to -1000 mV region. Fig. 3 illustrates the results of our photoelectrochemical studies of Pb²⁺ in the presence of **1**. In the dark, we do not see the wave at *ca.* -400 mV (*vs.* Ag) corresponding to reduction of free Pb²⁺. Instead, we observe a very broad wave at *ca.* -600 mV, indicating that the Pb²⁺ binds to the crown ether. Upon irradiation with 300–400 nm light, we obtain the wave (*ca.* -420 mV, *vs.* Ag) for reduction of free Pb²⁺, showing that the Pb²⁺–crown complex has dissociated due to photo-isomerization of **1** (Scheme 1). Irradiation with > 420 nm light yields the same result observed in the dark, indicating the Pb²⁺ binds again to **1**. ¹H and ¹³C NMR spectroscopies† of **1** upon addition of Pb²⁺ (2 : 1 Pb²⁺: **1** in CD₃CN) in the dark give further

Fig. 3 Photoelectrochemistry of 5.8×10^{-5} mol dm⁻³ Pb²⁺ + 2 × 10⁻³ mol dm⁻³ **1** in MeOH–H₂O (9:1) containing 5×10^{-2} mol dm⁻³ LiClO₄. (----) dark; (---) UV photolysis; (000) visible photolysis.

evidence of binding by Pb²⁺. For ¹H NMR, the crown ether methylene proton resonances are in the region δ 3.73–4.33 with Pb²⁺ *cf*. δ 3.56–4.00 in the absence of Pb²⁺. Resonance shifting and line broadening occur in both ¹H and ¹³C NMR spectra of **1** in the presence of Pb²⁺.

Further evidence suggests that the Pb²⁺ binds to the crown ether moiety. In the dark, we observe the same trend for cathodic reduction of Pb²⁺ in the presence of a large excess of **1** (Fig. 3) as that in excess benzo-15-crown-5 (Fig. 1). In each case, the reduction potential of Pb²⁺ becomes more negative upon addition of the crown ethers. Control experiments involving the dimethoxylated analogue of **1** (*i.e.*, **2**) show no indication of Pb²⁺ binding. We observe no shift in the Pb²⁺ reduction peak potential upon addition of **2** in the dark. Also, ¹H and ¹³C NMR spectroscopies[†] reveal no changes in the chemical shifts and shapes of the resonances of **2** upon addition of Pb²⁺ in the dark, indicating that Pb²⁺ does not bind to **2**.

Unlike previously designed crowned photochromics,^{2–4} in which UV photolysis enhances the cation-binding abilities of the ligands through the creation of additional binding sites or geometry changes, UV-induced photoisomerization of **1** causes open **1** to lose its cation-binding ability due to withdrawal of electron density from the crown ether moiety (Scheme 1). Kimura *et al.*⁵ observe a similar occurrence for Na⁺ bound to a crowned malachite green leuconitrile. The difference between **1** and Kimura's⁵ leuconitrile is that the coordination by **1** is photoreversible. There is a significant technical advantage to exerting optical control over metal-ion binding in this manner. The system using the photochromic chelator (*e.g.* sensor or extractor) functions in the dark, and only needs to be exposed to light, with consequent photodegradation, for brief periods of forced dissociation.

We gratefully acknowledge the financial support of the Office of Naval Research.

Footnote

† **1** ¹H NMR (500 MHz, CD₃CN, 298 K) δ 3.58 (t, 8 H, OCH₂), 3.71 (t, 4 H, OCH₂), 3.98 (t, 4 H, OMe), 6.42–8.00 (naphthopyran and phenyl, 16 H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ 69.5, 69.7, 69.9, 70.9, 71.4 (OCH₂), 83.0 (CPh₂), 113.7–151.3 (naphthopyran and phenyl).

2 ¹H NMR (500 MHz, CD₃CN, 298 K) δ 3.70 (s, 3 H, OMe), 3.72 (s, 3 H, OMe), remaining δ values same as those of **1** for naphthopyran and phenyl moieties. ¹³C NMR (125 MHz, CD₃CN, 298 K) δ 56.2 (OMe), 83.0 (CPh₂), 111.5–151.3 (naphthopyran and phenyl).

References

- C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 2495, 7017; Angew. Chem., Int. Ed. Engl., 1988, 27, 1021; R. M. Izatt, R. E. Terry, D. P. Nelson, Y. Chan, D. J. Eatough, J. S. Bradshaw, L. D. Hansen and J. J. Christensen, J. Am. Chem. Soc., 1976, 98, 7626; J. D. Lamb, R. M. Izatt, J. J. Christensen and D. J. Eatough, Thermodynamics and Kinetics of Cation-Macrocycle Interaction, in Coordination Chemistry of Macrocyclic Compounds, ed. G. A. Melson, Plenum, NY, 1979, pp. 145–217.
- 2 S. Shinkai, Dynamic Control of Cation Binding, in Cation Binding by Macrocycles, ed. Y. Inoue and G. W. Gokel, Marcel Dekker, NY, 1990, pp. 397–428 and references therein; F. C. J. M. van Veggel, W. Verboom and D. N. Reinhoudt, Chem. Rev., 1994, 94, 279 and references therein; S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa and O. Manabe, J. Am. Chem. Soc., 1980, 102, 5860.
- 3 M. Inouye, Y. Noguchi and K. Isagawa, Angew. Chem., Int. Ed. Engl., 1994, 33, 1163; K. Kimura, T. Yamashita and M. Yokoyama, J. Chem. Soc., Perkin Trans. 2, 1992, 613; H. Sasaki, A. Ueno, J.-I. Anzai and T. Osa, J. Am. Chem. Soc. 1986, 59, 1953.
- 4 K. Kimura, T. Yamashita, M. Kaneshige and M. Yokoyama, J. Chem. Soc., Chem. Commun., 1992, 969.
- 5 K. Kimura, M. Kaneshige and M. Yokoyama, J. Chem. Soc., Chem. Commun., 1994, 1103.

Received, 21st October 1996; Com. 6/07141D