Selective two-electron reduction of C_{60} by 10-methyl-9,10-dihydroacridine *via* photoinduced electron transfer

Shunichi Fukuzumi,*a Tomoyoshi Suenobu,a Shuichiro Kawamura,a Akito Ishidaa and Koichi Mikami*b

^a Department of Applied Chemistry, Faculty of Engineering, The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan

^b Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

The selective two-electron reduction of C_{60} to 1,2-dihydro[60]fullerene is attained *via* photoinduced electron transfer from 10-methyl-9,10-dihydroacridine to the triplet excited state of C_{60} in the presence of trifluoroacetic acid in benzonitrile under irradiation of visible light.

The preparation of dihydro[60]fullerene ($C_{60}H_2$) has recently attracted considerable interest, since it is the simplest C_{60} hydrocarbon derivative.^{1,2} The reduction of C_{60} has so far been achieved by the use of strong reductants such as BH₃, which yield not only $C_{60}H_2$ but also polyhydride mixtures ($C_{60}H_{2n}$, n = 2 and 3).^{1,2} Thus, the use of relatively mild reductants to achieve the selective reduction of C_{60} to $C_{60}H_2$ is desirable. However, C_{60} in the ground state has proved extremely difficult to reduce with mild reductants. We report herein the selective two-electron reduction of C_{60} by a mild hydride donor, 10-methyl-9,10-dihydroacridine (AcrH₂), *via* photoinduced electron transfer from AcrH₂ to the triplet excited state of C_{60} (${}^{3}C_{60}^{*}$) in the presence of trifluoroacetic acid in benzonitrile (PhCN) to yield 1,2- $C_{60}H_2$ selectively [eqn. (1)].

The hydride donor AcrH2 and its deuteriated analogue 10-methyl[9,9-2H₂]acridine (AcrD₂) were prepared as previously described.³ To a solution of $C_{60}\,(10.1\mbox{ mg}, 0.014\mbox{ mmol})$ in deaerated PhCN (50 ml) was added AcrH₂ (2.7 mg, 0.014 mmol) and CF₃CO₂H (0.014 mmol), and the solution was irradiated with a Xe lamp equipped with a UV-cut filter ($\lambda <$ 540 nm) for 30 min. After evaporation of PhCN under reduced pressure, the residue was separated by washing with MeCN and centrifuged to give 1,2-C₆₀H₂ exclusively in 70% yield.[†] In the dark, however, no reaction occurred even at high temperatures (e.g. 373 K). No appreciable amount of polyadducts was obtained even after a prolonged irradiation time under the present experimental conditions. The ¹H NMR signal at δ 5.91 (s, 2H) of $1,2-C_{60}H_2$ (400 MHz, in C_6D_6) agrees well with that reported previously.1 The visible spectrum exhibits an absorption maximum at $\lambda_{max} = 434$ nm, which is known to be characteristic of a 1,2-monoadduct resulting from 1,2-addition to a 6-6 bond.² Theoretical investigation also indicates that 1,2-C₆₀H₂ is the most stable form among 23 different regioisomers.4

When the photoreduction of C_{60} by AcrH₂ is carried out in the presence of NaI, the reaction is strongly inhibited. Since NaI is a well-known triplet quencher,⁵ the photoreduction of C_{60} probably proceeds via ${}^{3}\bar{C}_{60}^{*}$, which is quenched by NaI to retard the photoreduction. In fact, the lifetime of the transient ${}^{3}C_{60}{}^{*}$ triplet-triplet (T-T) absorption at $\lambda_{max} = 740$ nm is significantly reduced by the presence of AcrH2. The bimolecular quenching rate constant (k_q) of ${}^{3}C_{60}*$ by AcrH₂ was determined to be 4.3 × 10⁹ dm³ mol⁻¹ s⁻¹ from the decay kinetics of transient T-T absorption at 740 nm following excitation at 355 nm. The quantum yields (Φ) were also determined from an increase in absorbance due to 1,2-C₆₀H₂ by using a ferrioxalate actinometer⁶ under irradiation of monochromatized light of $\lambda = 546$ nm. The Φ value for the photoreduction of C_{60} by AcrH₂ in PhCN increases with an increase in the concentration of AcrH_2 to reach a limiting value ($\Phi_\infty)$ as shown in Fig. 1. From the dependence of Φ on [AcrH₂] is obtained the quenching constant K_{obs} (= $k_{obs}\tau_T$), which is converted to the rate constant ($k_{\rm obs}$) for the reaction of ${}^{3}C_{60}{}^{*}$ with AcrH₂ (5.0 × $10^9 \, dm^3 \, mol^{-1} \, s^{-1}$) by using τ_T for ${}^3C_{60}^*$ (32 µs) in PhCN.⁷ The $k_{\rm obs}$ value agrees with a $k_{\rm q}$ value (4.3 × 10⁹ dm³ mol⁻¹ s⁻¹) determined independently (*vide supra*). Such an agreement confirms that the photoreduction of \hat{C}_{60} proceeds via the triplet excited state.

The free energy change of the photoinduced electron transfer from AcrH₂ to ${}^{3}C_{60}{}^{*}$ is negative ($\Delta G^{0}_{et} = -32 \text{ kJ mol}^{-1}$) judging from the fact that the one-electron oxidation potential of AcrH₂ (E^{0}_{ox} vs. SCE = 0.81 V)⁸ is lower than the one-electron reduction potential of ${}^{3}C_{60}{}^{*}$ (E^{0}_{red} vs. SCE = 1.14 V).⁹ In such

Fig. 1 Dependence of the quantum yield on the concentration of AcrH₂ and AcrD₂ for the photoreduction of C_{60} (2.8 × 10⁻⁴ mol dm⁻³) by \bullet AcrH₂ and \bigcirc AcrD₂ in the presence of CF₃CO₂H (5.6 × 10⁻⁴ mol dm⁻³) in PhCN at 298K.

a case the electron transfer rate constant (k_{et}) may reach the diffusion-limited value in PhCN (5.6 × 10⁹ dm³ mol⁻¹ s⁻¹),⁹ which agrees with both the k_{obs} and k_q values (*vide supra*). Thus, the photoreduction of C₆₀ by AcrH₂ may proceed *via* photo-induced electron transfer from AcrH₂ to ${}^{3}C_{60}^{*}$ (k_{et}) as shown in Scheme 1. The photoinduced electron transfer gives the radical ion pair in competition with the decay to the ground state ($k_T = \tau_T^{-1}$). Since AcrH₂⁻⁺ is known to be a very strong acid,⁸ proton transfer from AcrH₂⁺⁺ to C₆₀⁻⁻ (k_H) may occur in the radical ion pair in competition with the back electron transfer to the reactant pair (k_b), to give C₆₀H⁻, which is converted to 1,2-C₆₀H₂ by fast electron transfer from AcrH⁻ in the presence of CF₃CO₂H. By applying the steady-state approximation to the reactive species, ${}^{3}C_{60}^{*}$ and the radical ion pair in Scheme 1, the dependence of Φ on [AcrH₂] can be derived as given by eqn. (2), which agrees with the observed dependence of Φ on

 $\Phi = (k_{\rm H}/(k_{\rm H} + k_{\rm b})]k_{\rm et}\tau_{\rm T}[{\rm Acr}{\rm H}_2]/(1 + k_{\rm et}\tau_{\rm T}[{\rm Acr}{\rm H}_2]) \quad (1)$

[AcrH₂] in Fig. 1. The limiting quantum yield Φ_{∞} corresponds to $k_{\rm H}/(k_{\rm H} + k_{\rm b})$. Thus, the Φ_{∞} value being smaller than unity (0.33) may be ascribed to the competition of the proton transfer process ($k_{\rm H}$) with the back electron transfer process ($k_{\rm b}$). The existence of a protonation step following the photoinduced electron transfer is confirmed by the observed deuterium isotope effect in the limiting quantum yield ($\Phi^{\infty}_{\rm H}/\Phi^{\infty}_{\rm D} = 1.2$ in Fig. 1) when AcrH₂ is replaced by the deuteriated compound (AcrD₂). In contrast, no kinetic isotope effect was observed for the rate constant of electron transfer.

Alternatively, C_{60} ⁻⁻ produced in the initial photoinduced electron transfer from AcrH₂ to C_{60} could be protonated by the acid, and hydrogen transfer from AcrH₂⁺⁺ to C_{60} H[·] gives the final products. However, no increase in the quantum yield was observed with an increase in the amount of CF₃CO₂H. In addition, the reduction potential of C_{60} was not affected by the presence of CF₃CO₂H in PhCN, as previously observed.¹⁰ Thus, the protonation of C_{60}^{++} probably occurs *via* AcrH₂⁺⁺ in the radical ion pair rather than *via* CF₃CO₂H (Scheme 1).

Footnote

 \dagger The yield was determined by HPLC equipped with an analytical 'Buckyclutcher I' column (Regis, Morton Grove, IL). A hexane– toluene mixture was used as eluent with a flow rate of 2 ml min⁻¹. The product was monitored at 434 nm with a UV-VIS detector.

References

- C. C. Henderson and P. A. Cahill, *Science*, 1993, **259**, 1885;
 S. Ballenweg, R. Gleiter and W. Krätschmer, *Tetrahedron Lett.*, 1993, **34**, 3737;
 L. Becker, T. P. Evans and J. L. Bada, *J. Org. Chem.*, 1993, **58**, 7630;
 T. F. Guarr, M. S. Meier, V. K. Vance and M. Clayton, *J. Am. Chem. Soc.*, 1993, **115**, 9862.
- 2 A. Hirsch, *The Chemistry of the Fullerenes*, Georg Thieme Verlag, New York, 1994, p. 115.
- 3 S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.
- 4 N. Matsuzawa, D. A. Dixon and T. Fukunaga, J. Phys. Chem., 1992, 96, 7594.
- 5 S. Fukuzumi, S. Kuroda and T. Tanaka, J. Am. Chem. Soc., 1985, 107, 3020.
- 6 C. G. Hatchard and C. A. Parker, *Proc. R. Soc. London, Ser. A*, 1956, 235, 518.
- 7 K. Mikami, S. Matsumoto, A. Ishida, S. Takamuku, T. Suenobu and S. Fukuzumi, J. Am. Chem. Soc., 1995, 117, 11134.
- 8 S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto and J. Otera, J. Am. Chem. Soc., 1993, 115, 8960.
- 9 J. W. Arbogast, C. S. Foote and M. Kao, J. Am. Chem. Soc., 1992, 114, 2277.
- 10 D. E. Cliffel and A. J. Bard, J. Phys. Chem., 1994, 98, 8140.
- Received, 31st October 1996; Com. 6/07417K