Solubilization of a self-assembled metallocryptand by addition of K+

Markus Albrecht* and Oliver Blau

Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, D-76131 Karlsruhe, Germany

The insoluble self-assembled neutral coordination compound Ga2L1 ³ can be solubilized by binding of K+ if the ligand H2L1 with internal oxygen atoms is used.

Helicates are formed in spontaneous self-assembly processes from linear oligo-donor ligands and appropriate metal ions. If nitrogen donors are used, cationic¹ or neutral² complexes are obtained, while oxygen donor ligands lead to anionic supramolecular species.3,4 In recent studies we could show that anionic helicates, which are formed from alkyl-bridged dicatecholate ligands and titanium(iv) ions, are able to bind alkalimetal counter ions in a cryptate-type fashion.4

To investigate the cation binding ability of neutral selfassembled metallo-supramolecular hosts⁵ we synthesized the ethylene-bridged di($\hat{8}$ -hydroxyquinoline) ligands H_2L_1 and H2L2.6 Upon formation of dinuclear triple-stranded complexes with metal ions M^{3+} either a cryptand-type compound $M_2L^1{}_{3}$ with internal oxygen atoms or a cage molecule M_2L_3 without internal donor atoms should be obtained. The latter is not able to bind alkali-metal cations in its interior.7

To prove this hypothesis we performed the reaction of $H_2L¹$ or H_2L^2 (3 equiv.) with $Ga(NO_3)_3 \cdot H_2O$ (2 equiv.) in the presence of sodium carbonate (3 equiv.) as base in methanol (Scheme 1). Heating overnight afforded yellow solids in quantitative yields. The compounds were insoluble in common solvents but elemental analysis shows the composition $Ga_2L_3xH_2O$ (L¹, $x = 8$; L², $x = 7$).†

If Ga_2L_3 is suspended in $(CD_3)_2SO$ and a large excess of potassium chloride or potassium chlorate is added and the sample is heated to 160° °C, the solution starts to turn yellow. The 1H NMR spectrum (500 MHz, 296 K, Fig. 1) reveals the signals of the ligating moieties of L^1 at δ 8.67 (dd, J 1.0, 8.4 Hz), 7.94 (dd, *J* 1.0, 4.8 Hz), 7.76 (d, *J* 8.4 Hz), 7.62 (dd, *J* 4.8, 8.4 Hz), and 7.31 (d, *J* 8.4 Hz). Resonances of diastereotopic protons of the alkyl spacer at δ 3.08 (m) and 2.69 (m) show the presence of chiral metal complex units. Corresponding 13C

Scheme 1 Preparation of Ga_2L_3 , $[K \subset (L_3Ga_2)]Cl$ and Ga_2L_3

NMR signals (125 MHz, 296 K) are observed at δ 153.5 (C), 144.8 (CH), 141.2 (CH), 136.1 (C), 132.0 (CH), 128.2 (C), 125.7 (C), 121.7 (CH), 112.5 (CH) and 31.0 (CH₂). In accordance with our earlier work on related dinuclear catecholate–titanium systems the compound should adopt the chiral helicate4 and not the achiral *meso*-helicate8 structure.

Preparation of $Ga₂L¹₃$ in the presence of a large amount of potassium chloride (70 equiv.) leads to a yellow precipitate from methanol which is soluble in $(CD_3)_2SO$ and gives rise to an NMR spectrum as discussed above. FAB(+) mass spectrometry [Fig. 2, 3-nitrobenzyl alcohol (3-NBA) matrix] confirms that a cationic species $[K(L¹3Ga₂)]⁺$ is obtained. At high molar masses exclusively the peak of $[K(L¹₃Ga₂)]⁺$ can be observed (*m/z* 1121, correct isotopic pattern). An analytically pure sample of $[K(L¹₃Ga₂)]Cl·8H₂O⁺$ was obtained by washing the solid material with a small amount of water. Extracting $[K(L¹₃Ga₂)]Cl$ with a large amount of water leads to the removal of KCl to give the insoluble neutral complex $Ga₂L¹₃$. Upon heating of $[K(L^1_3Ga_2)]Cl$ in $(CD_3)_2SO$ no dynamic behaviour can be observed by NMR spectroscopy up to 430 K indicating a remarkable configurational stability of the complex.3,8

[K(L¹₃Ga₂)]Cl can be crystallized from dmf-diethyl ether. Preliminary results of an X-ray structure analysis⁹ unambiguously show that the complex in the solid state adopts a helical structure and that the K^+ ion is located in the interior of the dinuclear gallium cryptand.

Fig. 1 ¹H NMR spectrum of $[K \subseteq (L^1_3Ga_2)]Cl$ in $(CD_3)_2SO$

Fig. 2 Positive FAB mass spectrum of $[K \subset (L^1Ga_2)]Cl$ (3-NBA matrix)

*Chem. Commun***., 1997 345**

Due to the lack of internal oxygen donors, $Ga₂L²₃$ is not solubilised by addition of potassium cations and heating to 160 °C. No endohedral complex with the alkaline-metal cation is formed in this case.

To summarise, we introduced a new ligand $H_2L¹$ for metallosupramolecular chemistry which upon coordination to Ga^{III} forms the neutral insoluble complex $Ga₂L¹₃$. Addition of potassium salts leads to the soluble inclusion compound $[K \subset (L^1 \text{B}Ga_2)]$ Cl. By contrast, no soluble material can be obtained by addition of K^+ to the ligand H_2L^2 , which does not possess internal oxygen atoms. Future work will focus on the nature of the insoluble coordination compound $Ga₂L¹₃$ and on its behaviour in the presence of different metal cations.

This work was supported by the Deutsche Forschungsgemeinschaft.

Footnote

 \dagger Anal. Calc. for $C_{60}H_{42}Ga_2N_6O_6.8H_2O$ ($Ga_2L1_3.8H_2O$): C, 58.75; H, 4.77; N, 6.85. Found: C, 58.62; H, 4.38; N, 6.89. Calc. for $C_{60}H_{42}ClGa₂$ $KN_6O_6.8H_2O$ {[$K(L^1_3Ga_2)$]Cl.8H₂O}: C, 55.39; H, 4.49; N, 6.46. Found: C, 55.11; H, 4.40; N, 6.23. Calc. for $C_{60}H_{42}Ga_2N_6O_6.7H_2O(Ga_2L_3.7H_2O)$: C, 59.63; H, 4.67; N, 6.95. Found: C, 59.80; H, 4.46; N, 6.81%.

References

- 1 Review: E. C. Constable, *Prog. Inorg. Chem.*, 1994, **42**, 67.
- 2 G. Stuckmeier, U. Thewalt and J.-H. Furhop, *J. Am. Chem. Soc.*, 1976, **98**, 278; W. S. Sheldrick and J. Engel, *J. Chem. Soc., Chem. Commun.*, 1980, 5; see also: R. C. Scarrow, D. L. White and K. N. Raymond, *J. Am. Chem. Soc.*, 1985, **107**, 6540.
- 3 B. Kersting, M. Meyer, R. E. Powers and K. N. Raymond, *J. Am. Chem. Soc.*, 1996, **118**, 7221; E. J. Enemark and T. D. P. Stack, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 996.
- 4 M. Albrecht and S. Kotila, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 1208; M. Albrecht, H. Röttele and P. Burger, *Chem. Eur. J.*, 1996, 2, 1264.
- 5 For comparison see *e.g.*: A. Schepartz and J. P. McDevitt, *J. Am. Chem. Soc.*, 1989, **111**, 5976.
- 6 M. Albrecht and O. Blau, *Synthesis*, in the press.
- 7 For other self-assembled cryptands and crown ethers see *e.g.*: R. W. Saalfrank, R. Burak, A. Breit, D. Stalke, R. Herbst-Irmer, J. Daub, M. Porsch, E. Bill, M. Müther and A. X. Trautwein, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 1621; R. W. Saalfrank, N. Löw, F. Hampel and H.-D. Stachel, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 2209.
- 8 M. Albrecht and S. Kotila, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 2134; M. Albrecht and C. Riether, *Chem. Ber.*, 1996, **129**, 829.
- 9 M. Albrecht, O. Blau and R. Fröhlich, unpublished work.

Received, 21st October 1996; Com. 6/07185F