Diphosphines with large natural bite angles lead to the formation of non-classical *cis*-(diphosphine)₂Ru(H)(H₂)⁺ complexes

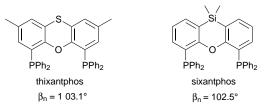
Mirko Kranenburg,^a Paul C. J. Kamer,^a Piet W. N. M. van Leeuwen^{*a} and Bruno Chaudret^{*b}

^a J. H. van't Hoff Research Institute, Department of Inorganic Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

^b Laboratoire de Chimie de Coordination du CNRS, lié par conventions à l'Université Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse Cédex, France

The application of diphosphine ligands with large natural bite angles leads to the formation of thermo-labile, non-classical *cis*-(diphosphine)₂Ru(H)(H₂)⁺ complexes.

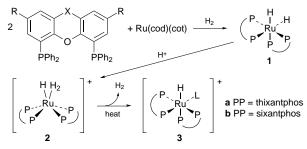
The discovery of the first η^2 -dihydrogen complex by Kubas *et al.*¹ has led to numerous studies on the factors determining the properties of such complexes. The bond between the transition metal and the H₂ ligand is a subtle balance between σ donation and π back-donation. Morris and coworkers have reported several studies on the effect of electronic modifications in diphosphine ligands on the stability of ruthenium dihydrogen complexes and on the acidity of the H₂ ligand.^{2–9}

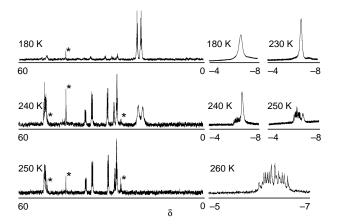

So far, few detailed studies have dealt with the effect of geometrical changes on the nature and reactivity of η^2 -dihydrogen complexes.

Recently, Morokuma and coworkers reported that, with an increasing bite angle of the diphosphine, the nature of the (diphosphine)₂Ru('H₃')⁺ complexes changes from *trans*-hydrido–dihydrogen to classical trihydride and to *cis*-hydrido–dihydrogen complexes.¹⁰

We recently developed¹¹ diphosphines based on xanthenelike backbones that allow the investigation of the effect of large bite angles on the properties of transition-metal complexes (Fig. 1). Here, we report that the geometrical constraints of these rigid bidentate phosphine ligands have a large effect on the structure and stability of ruthenium dihydrogen complexes.

cis-(Diphosphine)₂RuH₂ complexes **1** were prepared from Ru(cod)(cot) (cod = cycloocta-1,5-diene, cot = cycloocta-1,3,5-triene) and 2 equiv. of the diphosphine under 5 kPa H₂ (Fig. 2).[†]

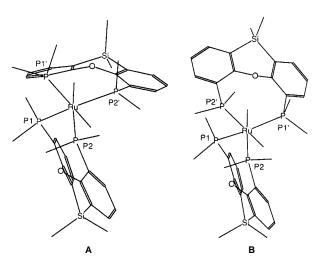

Protonation of (thixantphos)₂RuH₂ **1a** at 176 K with HBF₄·OEt₂‡§ results in one product, which exhibits a broad symmetric signal in the ¹H NMR spectrum at δ –6.7 and a double triplet in the ³¹P{¹H} NMR spectrum. Based on the ³¹P NMR spectrum and the $T_1(\text{min})$ for the hydride signal in the high-field region of the ¹H NMR spectrum (17 ms at 240 K), we assign these signals to a *cis*-Ru(H₂)H species (**2a**). Upon raising the temperature slowly from 220 to 260 K, the signals from **2a** decrease and signals of a new species appear (Fig. 3). This new component gives rise to a sharp 14 line signal centred at δ


Fig. 1 Structure and natural bite angles of the ligands. Bite angles calculated using molecular mechanics (CAChe WorkSystem),¹² with a P–Ru bond length of 2.424 Å¹⁰ and a P–Ru–P angle bending force constant of 0 mdyn Å rad⁻¹ (1 dyn = 1×10^{-5} N). The natural bite angle is defined as the preferred chelation angle determined only by ligand backbone constraints and not by metal valence angles.¹³

-6.28 in the high-field region of the ¹H NMR spectrum, and an ABMX splitting in the ³¹P{¹H} NMR spectrum. At 260 K this is the only species present. The nature of this new species was unambiguously determined by measurement of selective hydride-coupled ³¹P NMR as the cationic species (thix-antphos)₂RuH⁺ **3a**, resulting from the evolution of H₂ [*T*₁ (240 K) 242 ms]. The vacant site probably interacts with the counter ion or a solvent molecule (L).

Upon protonation of (sixantphos)₂RuH₂ **1b** at 176 K three products are formed as concluded from ¹H and ³¹P NMR. In the high-field region of the ¹H NMR spectrum one sharp 14 line multiplet centred at δ -5.6, similar to the signal observed for **3a**, and two broad signals located at δ -6.9 (major) and at δ -6.6 (minor) are present. Based on the ³¹P NMR spectrum and the *T*₁(min) value of the combined ¹H signals at -6.9 to -6.6 (23 ms at 200 K), these signals are assigned to two *cis*-Ru(H₂)H isomers, **2b** and **2b'**. The ratio of these complexes is 1 (**2b'**): 4 (**2b**): 9 (**3b**). Increasing the temperature to 200 K results in a slight decrease of the amount of **2b**, **b'** and an increase of **3b** and at 210 K only the 14 line hydride signal of **3b** remains [*T*₁ (200 K) = 622 ms].

Fig. 3 Change with temperature of the ${}^{31}P{}^{1}H$ and high-field region of the ${}^{1}H$ NMR spectra of the reaction mixture arising from protonation of **1a** with HBF₄·OEt₂; * denotes an impurity


Chem. Commun., 1997 373

The short T_1 values observed for **2** are indicative of the presence of short H–H distances (0.84 Å and 0.89 Å for **2a** and **2b** respectively as calculated from $T_1(H_2)$ and $T_1(H)$: see ef. 6.

Comparison of the ³¹P{¹H} NMR spectra obtained for 2a and 2b reveals a notable difference in geometry for the complexes of these similar ligands. We used molecular modelling to investigate the possible geometries for these (diphosphine)₂Ru- $(H)(H_2)^+$ complexes. The relative orientation of the backbones of the diphosphines when coordinated to the metal centre allows us to distinguish two types of complexes (Fig. 4). In complexes of type A, every P nucleus has a different environment, therefore all P nuclei are magnetically inequivalent and an ABMX splitting in the ³¹P NMR spectrum is expected. In complexes of type **B**, we can distinguish two pairs of magnetically different P nuclei and an A2B2 splitting in the ³¹P NMR spectrum is expected. In type A complexes the aromatic rings are more densely packed, compared to type B complexes, resulting in energetically favourable π -stacking interactions. This would be the favoured product (as seen in 2b), but for thixantphos these stabilizing interactions are hampered by the methyl groups on the backbone, resulting in the formation of type A only.

The low thermal stability of **2a** and **2b** compared to other (diphosphine)₂RuH₃⁺ complexes may be explained by the fact that the xantphos-type diphosphines enforce large bite angles, and therefore induce significant distortion of the octahedral ruthenium complex. INDO/1 calculations show that this distortion of the octahedral geometry induced by the xantphostype diphosphines can lead to less optimal orbital overlap, resulting in decomplexation of H₂. Experimentally, for all three (diphosphine)_2Ru \hat{H}_{3^+} complexes presented here, there is one signal corresponding to the 'H₃' in the ¹H NMR spectra, indicating very rapid exchange as a result of the cis relative position of the hydride and dihydrogen ligands, unlike other $(diphosphine)_2MH_3^+$ complexes (M = Fe, Ru, Os), which only coalesce at higher temperatures.^{2–7,9,14–17} Addition of CF_3CO_2D to 1 leads for the product to the same ¹H and ³¹P{¹H} NMR spectra as for protonation with HBF₄·OEt₂. There is no resolvable H-D coupling, but in the ³¹P{¹H} NMR spectrum all signals have small shoulders due to downfield isotopic shifts.

The application of diphosphines with large bite angles in the synthesis of (diphosphine)₂Ru(H)(H₂)⁺ complexes emphasises the delicate nature of the bonding of H₂ to a transition metal. The distortion of the octahedral geometry of the complex favours the hydrogen atom exchange and destabilises the bond of H₂ to the metal centre by reducing the back-donation to the H₂ ligand. The results reported here provide experimental evidence for the predictions by Morokuma and coworkers¹⁰ that

Fig. 4 Two types of isomer for **2b**. Only C_{ipso} atoms of phenyl groups are shown for clarity.

an increase of the P–Ru–P bite angle might lead to a change from *trans*-hydride–dihydrogen complexes¹⁴ to equilibria between *cis* and *trans* complexes,¹⁵ and further to *cis* complexes. Furthermore these results show that tuning a steric parameter such as the natural bite angle of diphosphines dramatically influences the electronic properties of a transition-metal complex.

We thank F. Lacassin, G. Commenges (LCC du CNRS) and J. M. Ernsting (UoA) for assistance with NMR experiments, and the EU Human Capital and Mobility Program (MMCOS network) for financial support (in part) to M. K.

Footnotes

† Synthesis of starting material: 0.120 g of Ru(cod)(cot) (0.381 mmol) and 2 equiv. of diphosphine were added to a Fisher–Porter bottle. The flask was flushed with argon, and 10 cm³ of thf was added. Upon stirring a bright yellow solution formed, which was flushed with H₂, then pressurized to 5 kPa, and heated to 433 K for 20 h, during which time the reaction mixture turned dark brown. After cooling to room temp., the solvent was evaporated, and an extensive washing procedure yielded the pure product 1 (50–60%).

‡ Protonation experiments: a solution of **1** (*ca*. 0.01 g, *ca*. 7 μmol) in 0.5 cm³ of CD₂Cl₂ was frozen in liquid N₂. HBF₄·Et₂O was added (3 mm³, 35 μmol). The NMR tube was allowed to warm just to the melting point of the solution, shaken to dissolve the frozen HBF₄·Et₂O, then immediately lowered into the NMR probe at 180 K. The first ¹H and ³¹P{¹H} NMR spectra and the *T*₁ measurements were performed at this temperature. Subsequent measurements were performed at 10 K intervals up to 300 K. § *Selected NMR data*: ¹H and ³¹P{¹H} NMR spectra measured in CD₂Cl₂ at 300 and 121.5 MHz respectively, except for **3a**, for which a separate experiment was performed in (CD₃)₂CO with ¹H and ³¹P{¹H} NMR spectra at 400 and 160 MHz, respectively. The ¹H data refers to the hydride region. **1a**; $\delta - 8.32$ (dt); ³¹P{¹H}, δ 36.3 (t), 33.5 (t). **2a**; ¹H, $\delta - 6.69$ [br, *T*₁(min) 17 ms (240 K)]; ³¹P{¹H}, δ 33.5 (m), 35.0 (m), 42.5 (m), 57.2 (m).

References

- 1 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini and H. J. Wasserman, *J. Am. Chem. Soc.*, 1984, **106**, 451.
- 2 R. H. Morris, F. F. Sawyer, M. Shiralian and J. Zubkowski, J. Am. Chem. Soc., 1985, 107, 5581.
- 3 M. Bautista, K. A. Earl, R. H. Morris and A. Sella, J. Am. Chem. Soc., 1987, 109, 3780.
- 4 M. Bautista, K. A. Earl, R. H. Morris and A. Sella, J. Am. Chem. Soc., 1988, 110, 7031.
- E. P. Cappelani, P. A. Maltby, R. H. Morris, C. T. Schweitzer and M. R. Steele, *Inorg. Chem.*, 1989, 28, 4437.
 M. Bautista, E. P. Cappelani, S. D. Drouin, R. H. Morris,
- 6 M. Bautista, E. P. Cappelani, S. D. Drouin, R. H. Morris, C. T. Schweitzer, A. Sella and J. Zubkowski, J. Am. Chem. Soc., 1991, 113, 4876.
- 7 K. L. Earl, G. Jia, P. A. Maltby and R. H. Morris, J. Am. Chem. Soc., 1991, 113, 3027.
- 8 B. Chin, A. J. Lough, R. H. Morris, C. T. Schweitzer and C. D'Agostino, *Inorg. Chem.*, 1994, **33**, 6278.
- 9 E. P. Cappelani, S. D. Drouin, G. Jia, P. A. Maltby, R. H. Morris and C. T. Schweitzer, J. Am. Chem. Soc., 1994, **116**, 3375.
- 10 F. Maseras, N. Koga and K. Morokuma, Organometallics, 1994, 13, 4008.
- 11 M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz and J. Fraanje, *Organometallics*, 1995, 14, 3081.
- 12 CAChe WorkSystem, CAChe Scientific Inc., 18700 N.W. Walker
- Road, Building 92-01, Beaverton, OR 97006, USA. 13 C. P. Casey and G. T. Whiteker, *Isr. J. Chem.*, 1990, **30**, 299.
- M. Saburi, K. Aoyagi, T. Takahashi and Y. Uchida, *Chem. Lett.*, 1990,
- 601.
- 15 M. Saburi, K. Aoyagi, H. Takeuchi, T. Takahashi and Y. Uchida, *Chem. Lett.*, 1990, 991.
- 16 M. Saburi, K. Aoyagi, T. Komada, T. Takahashi, Y. Uchida, K. Kozawa and T. Uchida, *Chem. Lett.*, 1990, 1909.
- 17 T. Tsukahara, H. Kawano, Y. Ishii, T. Takahashi, M. Saburi, Y. Uchida and S. Akutagawa, *Chem. Lett.*, 1988, 2055.

Received, 12th August 1996; Com. 6/05635K