Energy vs. electron transfer processes involving a novel cobalt cage complex

Christian Königstein,*a,b,c⁺ Albert W. H. Mau,*a⁺ Peter Osvath,*a,b[§] and Alan M. Sargeson*b[¶]

^a Division of Chemicals and Polymers, CSIRO, Clayton, Victoria 3169, Australia

^b Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia

^c Institute of Physical Chemistry, Vienna University of Technology, Getreidemarkt 9/156, A-1060 Wien, Austria

A novel cage complex, $[Co(Me_2-N_3S_3absar)]^{3+}$, able to undergo fast and efficient electron transfer reactions, is examined as an electron transfer agent in photocatalytic systems aimed at generating H₂; its electrochemical behaviour and excited state quenching properties are described.

The ability to capture energy and transfer it *via* redox reactions is a key issue in the photochemical conversion of solar energy. Artificial systems have used the viologens,^{1,2} polypyridinium complexes,³ or cobalt cage complexes^{4–6} as electron transfer agents. The high chemical stability of the cobalt cages allows the Co^{II}–Co^{III} redox states to be cycled repeatedly without decomposition. Systems using [Co(sep)]³⁺, [Co(sar)]³⁺ (Fig. 1) and their derivatives as electron relay compounds gave comparable rates of H₂ formation^{4–6} to those using methyl viologen (MV²⁺). Although their overall efficiency of conversion of light to hydrogen ($\phi_{\frac{1}{2}}$ H₂) was only *ca*. 10%, their turnover numbers were at least three orders of magnitude higher than those of the viologens, and there is potential for improvement.

The rate of photoinduced H_2 formation is controlled by the generation of an excited state S* of the sensitiser (1), and three distinct electron transfer processes [eqns. (2), (3), (3a)].

$$S + h\nu \rightarrow S^*$$
 (1)

$$S^* + Co^{III} \rightarrow S^+ + Co^{II}$$
 (2)

$$Co^{II} + H^{+} \xrightarrow{\text{PUPVa}} 1/2H_{2} + Co^{III}$$
(3)

$$Co^{II} + S^+ \rightarrow S + Co^{III}$$
 (3a)

Step (3) is essentially quantitative in the presence of the colloidal Pt/pva catalyst.⁴ The rate constants of the electron transfer processes are governed by the respective reduction potentials and the electron self-exchange rate constants of the reaction partners. As the driving force for eqn. (2) is reduced (*i.e.* the reduction potential of the cobalt complex becomes more negative), energy transfer from the excited state competes with electron transfer. On the other hand, a more negative reduction potential is desirable for H₂ evolution [eqn. (3)]. These conflicting demands need to be optimised.

The electron transfer rates of the CoN₆ cages are lower than that of MV²⁺, because of their lower self-exchange rates (k_{11} ca. 1–5 m⁻¹ s⁻¹),⁷ and this is a limiting factor in their use. The CoN₃S₃ cages however, have much higher self-exchange rate constants (k_{11} ca. 10⁴ m⁻¹ s⁻¹),^{8,9} but their cobalt(ii) complexes are weaker reductants than the CoN₆ cages (by ca. 350 mV) so

Fig. 1 Cobalt cage complexes

H₂ production is modest at pH ≤ 5.^{4,10} Synthetic efforts were therefore directed to the preparation of CoN₃S₃ cages with contracted cavities,¹⁰ as these should have a more negative reduction potential. Recent efforts to prepare [Co(Me₂-N₃S₃sar)]³⁺ led to a novel and efficient method of synthesising the contracted cavity cage [Co(Me₂-N₃S₃absar)]³⁺ ([CoL]³⁺, Fig. 1), in which a methylene unit is missing from the cap.¹¹ The smaller cavity, and the inductive effect of the apical methyl group lowered the reduction potential by *ca*. 200 mV compared with other CoN₃S₃ cages¹⁰ (*E* = −0.20 V *vs*. NHE, reversible one-electron process).|| The cobalt(ii) complex should reduce protons in the presence of a colloidal platinum catalyst (at pH ≤ 3), and together with the high electron self-exchange rate ($k_{11} = 1.3 \times 10^4 \text{ m}^{-1} \text{ s}^{-1}$),⁹ this made it a promising candidate for use as an electron transfer agent for light-induced H₂ formation.

Excited-state quenching reactions were studied with both $[Ru(bpy)_3]^{2+}$ and anthracene carboxylate (AA⁻) as sensitisers. Earlier results with MV²⁺ had shown that AA⁻ had a much higher cage escape yield ($\phi_{ce} = 1$) than $[Ru(bpy)_3]^{2+}$ $(\phi_{ce} = 0.25)$.¹² The rate constants for energy and electron transfer involving the excited singlet and triplet states of AAwith [CoL]³⁺ are shown in Fig. 2. Both the excited ¹AA⁻ and ${}^{3}AA^{-}$ states were quenched by $[CoL]^{3+}$ at pH = 7, but linear Stern–Volmer plots (indicating dynamic quenching) were obtained only for the ${}^{3}AA^{-}$ quenching ([CoL]³⁺ $\leq 5 \times 10^{-3}$ m).** The non-linear Stern–Volmer plots obtained for ¹AA– quenching imply some initial ground-state complex formation. This was also concluded from $k_q = 2 \times 10^{11} \text{ m}^{-1} \text{ s}^{-1}$ (obtained for low quencher concentrations where a degree of linearity was observed in the Stern-Volmer plots), which is higher than diffusion limited rate constants (*ca.* 10^{10} m⁻¹ s⁻¹). Both excited states are capable of reducing $[CoL]^{3+}$ [Fig. 2, $E^{\circ}({}^{1}AA - AA^{-}) = -2.2 \text{ V } vs. \text{ NHE}, E^{\circ}({}^{3}AA - AA^{-}) = -0.88 \text{ V}].^{12}$ However, with an energy of 2.67 eV for the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transition of [CoL]³⁺, energy transfer from ¹AA⁻ to Co^{III} is also possible.

Fig. 2 Energy and electron transfer processes between AA^- and $[CoL]^{3+}$. Radiative transitions (_____), non-radiative transitions (______), electron transfer processes (-_ - - - -), energy transfer processes (_____). Co^{III} = $[CoL]^{3+}$; Co^{II} = $[CoL]^{2+}$.

Chem. Commun., 1997 423

³AA⁻ quenching to yield [CoL]²⁺ occurs exclusively via excited-state electron transfer (efficiency ca. 100%, $k_q = 3 \times$ $10^9 \,\mathrm{m}^{-1} \,\mathrm{s}^{-1}$). The very high cage escape yield and the enhanced intensity of the ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transition of $[CoL]^{3+}$ ($\lambda_{max} = 460$ nm, $\epsilon = 640$ m⁻¹ cm⁻¹) allowed us to measure for the first time the bleaching†† of the ground-state absorption of a cobalt(iii) cage complex due to electron transfer (Fig. 3). The cage escape yield was determined to be close to unity, and interestingly, the rate constant for the back electron transfer ($k_{\rm b} = 7 \times 10^8$ \mathbf{m}^{-1} s⁻¹, Fig. 2) was smaller than that obtained with MV²⁺ $(k_{\rm b} = 2.7 \times 10^9 \,{\rm m}^{-1} \,{\rm s}^{-1}).^{12}$ Thus, the overall quantum yield for the light-induced charge separation giving $[CoL]^{2+}$ and AA• is very high. Assuming a quencher concentration of 5×10^{-4} m, 13% of the excited singlet state is deactivated via electron/ energy transfer to $[CoL]^{3+}$, 6% is reemitted as fluorescence, and the yield of triplet formation is 81%. If only the triplet state participates effectively in the electron transfer to [CoL]³⁺, 80% of the initially absorbed photons lead to the charge-separated state ($[CoL]^{2+} + AA$ ·). Steady-state photolysis experiments with H₄edta as a sacrificial electron donor confirmed the quantum yield of $\eta = 0.8$ for the formation of [CoL]²⁺. The main contribution to the electron transfer and charge separation is from the ³AA⁻ state, whereas energy transfer predominates over electron transfer from 1AA-, which is also the case for MV^{2+.12} Comparing the excitation energy (3.15 eV) with the energy of the products (1.13 eV) after charge separation, 36% of the excitation energy is stored (Fig. 2).

 $[CoL]^{3+}$ excited-state electron transfer with $[Ru(bpy)_3]^{2+}$ as photosensitiser ($k_q = 8.9 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$) has a comparable quenching rate constant to MV^{2+} ($k_q = 9.6 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$),⁴ but is higher than those for $Co^{III}N_6$ cages with similar reduction potentials ($[Co(Cl_2\text{-sar})]^{3+}$: $k_q = 2.2 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$, $[Co(sep)]^{3+}$: $k_q = 1.4 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$),⁴ as expected on the basis of the higher self-exchange rates of the CoN_3S_3 cages.^{8,9}

Unfortunately, the back-electron transfer rate constant and the yield of electron transfer and charge separation could not be measured because of the overlap of the $[CoL]^{3+}$ and $[Ru(bpy)_3]^{2+}$ absorptions at *ca.* 460 nm.

[CoL]³⁺ was able to mediate the photoinduced H₂ formation at pH 5 (standard conditions with MV²⁺) with [Ru(bpy)₃]²⁺ as photosensitiser[‡]; ($\eta = 0.004$) despite the relatively positive potential compared with that of MV²⁺–MV⁺⁺ ($\eta = 0.1$; $E^{\circ} = -0.44$ V). A similar complex with a potential of *ca.* -0.4 V should give very efficient conversion, and this is now being sought.

Although AA^- does not possess an absorption band in the visible region of the spectrum, as long as energy transfer processes to the ${}^{3}AA^{-}$ state take place, its favourable high cage

Fig. 3 Transient absorption spectra. (a) $AA^- (5 \times 10^{-4} \text{ m})$ in water; 100 ns after laser pulse (XeF₂ excimer, 50 mJ pulse⁻¹). (b) $AA^- (5 \times 10^{-4} \text{ m}) + [CoL]^{2+} (3.33 \times 10^{-3} \text{ m})$; 100 ns after laser pulse. Insert: as (b) but 5 µs after laser pulse.

escape yield can be utilised. Energy transfer from the ³MLCT state of $[Ru(bpy)_3]^{2+}$ to AA⁻ gives the ³AA⁻ state in very high yield.¹³ More efficient storage of solar energy could thus be achieved using a series of molecules designed with the appropriate properties to optimise the efficiency of each step in the system. Antenna molecules which absorb a large part of the solar spectrum¹⁴ can be used to transfer light energy efficiently to anthracene. An assembly consisting of an antenna molecule, anthracene and a stable CoN₃S₃ cage of the type described here has the potential for efficient conversion of light energy to chemical energy.

C. K. thanks the 'Fonds zur Förderung der Wissenschaftlichen Forschung' (Project J0951-CHE) for financing his stay both at the ANU and at the CSIRO, Australia.

Footnotes

- † E-mail: ckoenigs@fbch.tuwien.ac.at
- ‡ E-mail: a.mau@chem.csiro.au
- § E-mail: p.osvath@chem.csiro.au
- ¶ E-mail: sargeson@rsc.anu.edu.au

 \parallel Cyclic voltammetry was performed in 1.0 m KCl (purged with N₂) using an EG & G Princeton Applied Research model 174 A polarographic analyser and a model 175 universal programmer, a platinum flag counter electrode, a Ag/AgCl reference electrode, and either a hanging mercury drop electrode (EG&G PAR model 303) or a F-doped SnO₂ covered glass sheet (TCO-glass, electrode area 1.5 cm²) as working electrode. The concentration of [CoL]³⁺ was 4 × 10⁻³ m.

** Stern–Volmer plots of excited singlet state quenching were obtained using fluorescence emission, measured with a Perkin Elmer LS 50 luminescence spectrometer. The kinetics of quenching of ${}^{3}AA^{-}$ and ${}^{3}MLCT$ of [Ru(bpy)₃]²⁺ were investigated by measuring the lifetime of the triplet–triplet absorption of anthracene at 425 nm, using a 150 W xenon lamp (analysing light), a Bausch & Lomb high-intensity monochromator (1350 grooves mm⁻¹), and an AMI 9658b photomultiplier. Transient absorption spectra were obtained using an EG & G Princeton Applied Research Model 1460 optical multichannel analyser. As excitation light ($\lambda_{ex} = 351$ nm), a Lambda Physik LPX 100 excimer laser was used (XeF₂).

†† [CoL]²⁺ has a much weaker absorption at 465 nm ($\epsilon = 100 \text{ m}^{-1} \text{ cm}^{-1}$) and a weak band at 550 nm ($\epsilon = 80 \text{ m}^{-1} \text{ cm}^{-1}$).

^{‡‡} Buffered solutions (pH 5) containing 3.75×10^{-4} m [Ru(bpy)₃]-(ClO₄)₂, 2×10^{-3} m electron transfer agent (MV²⁺ or [CoL]³⁺), 5×10^{-5} m colloidal platinum catalyst (stabilised by polyvinyl alcohol), and 2×10^{-2} m H₄edta, were irradiated using a 150 W tungsten lamp. The amount of H₂ evolved was measured by GC as described in ref. 4.

References

- 1 C. Königstein, J. Photochem. Photobiol. A: Chem., 1995, 90, 141.
- 2 S. Hühnig and H. Berneth, Top. Curr. Chem., 1980, 92, 1.
- 3 K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159.
- 4 I. I. Creaser, L. R. Gahan, R. J. Geue, A. Launikonis, P. A. Lay, J. D. Lydon, M. G. McCarthy, A. W. H. Mau, A. M. Sargeson and W. H. F. Sasse, *Inorg. Chem.*, 1985, 24, 2671.
- 5 V. Houlding, T. Geiger, V. Kölle and M. Grätzel, J. Chem. Soc., Chem. Commun., 1982, 681.
- 6 M. A. R. Scandola, F. Scandola, A. Indelli and V. Balzani, *Inorg. Chim. Acta*, 1983, **76**, L67.
- 7 I. I. Creaser, A. M. Sargeson and A. W. Zanella, *Inorg. Chem.*, 1983, 22, 4022.
- 8 P. Osvath, A. M. Sargeson, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1991, 1036.
- 9 P. Osvath, A. M. Sargeson and A. W. Zanella, 1996, unpublished results.
- 10 P. A. Lay, J. Lydon, A. W.-H. Mau, P. Osvath, A. M. Sargeson and W. H. F. Sasse, Aust. J. Chem., 1993, 46, 641.
- 11 P. Osvath, A. M. Sargeson, A. MacAuley, R. E. Mendelez, S. Subramanian, M. J. Zaworotko and L. M. Broge, to be submitted.
- 12 O. Johansen, A. W. H. Mau and W. H. F. Sasse, *Chem. Phys. Lett.*, 1983, 94, 107.
- 13 O. Johansen, A. W. H. Mau and W. H. F. Sasse, *Chem. Phys. Lett.*, 1983, 94, 113.
- 14 A. W. H. Mau, O. Johansen and W. H. F. Sasse, *Photochem. Photobiol.*, 1985, **41**, 503.

Received, 4th December 1996; Com. 6/08199A

424 Chem. Commun., 1997